Citation: | HOU Tian-shun. Model for compaction density and engineering properties of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2127-2135. DOI: 10.11779/CJGE201411020 |
[1] |
.OH S W, LEE J K, KWON Y C, LEE B J. Bearing capacity of light weight soil using recycled styrofoam beads[C]// Proceedings of the International Offshore and Polar Engineering Conference. Kitakyushu: International Society of Offshore and Polar Engineers, 2002: 670-674.
|
[2] |
.YOONZ G L, JEON S S, KIM B T. Mechanical characteristics of light-weighted soils using dredged materials[J]. Marine Georesources and Geotechnology, 2004, 22(4): 215-229.
|
[3] |
YAJIMA J, MYDIN S H. Mechanical properties of the unsaturated foam composite light-weight soil[C]//4th International Conference on Unsaturated Soils. United states: American Society of Civil Engineers, 2006: 1639-1650.
|
[4] |
.NAGATOME T, HASHIMOTO T, OTANI J, et al. Absorption property evaluation of light weight soil with air foam due to different mixing conditions[J]. Zairyo/Journal of the Society of Materials Science, 2010, 59(1): 68-73.
|
[5] |
HOU Tian-shun. Influence of expanded polystyrene size on deformation characteristics of light weight soil[J]. Journal of Central South University, 2012, 19(11): 3320-3328.
|
[6] |
MIKI H. Flow treatment technology of soil and its applications[J]. Civil Engineering Technology Data, 1995, 37(9): 32-37.
|
[7] |
YOKOTA, MISHIMA N. YU Xiao-bo, translator. Foam light-weight soil[J]. Subgrade Engineering, 1997(4): 81-86.
|
[8] |
.YOSHIKAWA M. YU Xiao-bo, translator. Mixed ratio test and construction of light weight filling in the water[J]. Subgrade Engineering, 1997(5): 74-78.
|
[9] |
.GU Huan-da, CHEN Su. Engineering properties of river sludge and its stabilization[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 108-111. (in Chinese)
|
[10] |
HOU Tian-shun. Influence law of characteristic water content on basic properties of light weight soil[J]. Rock and Soil Mechanics, 2012, 33(9): 2581-2587. (in Chinese)
|
[11] |
ZHU Wei, LI Ming-dong, ZHANG Chun-lei, LI Hong. The optimum moisture content of sand EPS beads mixed lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 21-25. (in Chinese)
|
[12] |
HOU Tian-shun, XU Guang-li. Optimum water content models and tests of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1129-1134. (in Chinese)
|
[13] |
GB/T 50123—1999 Standard for soil test method[S]. 1999. (in Chinese)
|
[14] |
LI Ming-dong, ZHU Wei, ZHANG Chun-lei, et al. Effect of compaction parameters on lightweight sand-EPS beads soil[J]. Journal of Hohai University (Natural Sciences), 2008, 36(6): 814-817. (in Chinese)
|
[15] |
LI Ming-dong, ZHU Wei, ZHANG Chun-lei. A compaction model of soft inclusion soils[J]. China Civil Engineering Journal, 2009, 42(12): 149-153. (in Chinese)
|
[16] |
HOU Tian-shun. Experimental study on mechanical properties of foamed particle light weight soil mixed with silt[D]. Wuhan: China University of Geosciences, 2008. (in Chinese)
|
[17] |
DENG An, XIAO Yang, LIU Han-long. Engineering behavior of lightweight fills of sand-EPS beads[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1140-1145. (in Chinese)
|
[1] | JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029 |
[2] | LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005 |
[3] | HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611. DOI: 10.11779/CJGE202109004 |
[4] | XIE Jun, BAO Shu-xian, HU Ying-fei, NI Ya-jing, LI Yan-tao. Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009 |
[5] | CHENG Ke, MIAO Yu. Effects of loess content on dynamic shear modulus and damping ratio of Taiyuan sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 69-72. DOI: 10.11779/CJGE2019S2018 |
[6] | LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024 |
[7] | BAI Li-dong, XIANG Wei, SAVIDIS A Stavros RACKWITZ Frank, SAVIDIS A Stavros RACKWITZ Frank. Resonant column and bender element tests on maximum shear modulus of dry sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188. |
[8] | CHI Shichun, GUO Xiaoxia, YANG Jun, LIN Gao. Small strain characteristics and threshold strain of dynamic Hardin-Drnevich model for soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 243-249. |
[9] | YUAN Xiaoming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 264-269. |
[10] | Shi Zhaoji, Feng Wanling, Zhang Zhanji. The Measurement of Dynamic Young's Modulus by Resonant Column Method[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(6): 25-32. |
1. |
倪小东,张宇科,陆江发,崔允亮. 地层局部沉陷诱发有压管道渗透侵蚀机制研究. 华中科技大学学报(自然科学版). 2025(02): 17-24 .
![]() | |
2. |
王晓璞,赵海龙,任玲玲,高岩岩,薛东兴,山河,王斌,姚传进,赵建,白英睿. 结合人工智能图像识别的微塑料运移与滞留微观可视化实验方法. 实验技术与管理. 2025(04): 14-19 .
![]() | |
3. |
梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 .
![]() | |
4. |
施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
![]() | |
5. |
刘江涛,李存军,于江华,张彦红,张春彬,孔纲强. 施工顺序对微型钢管桩加固既有基础变形的影响试验研究. 土木与环境工程学报(中英文). 2024(04): 100-108 .
![]() | |
6. |
梁越,何慧汝,许彬,张鑫强,冉裕星. 基于透明土的水力梯度对渗流侵蚀影响试验研究. 河海大学学报(自然科学版). 2024(05): 60-66 .
![]() | |
7. |
徐春瑞,郭畅,黄博. 孔隙率对砂土渗透稳定性影响的内部可视化研究. 地基处理. 2024(05): 451-462 .
![]() | |
8. |
王宇,陈从建,钱声源,段祥宝,谷艳昌. 可视化渗透破坏实验装置研发及土力学实践探索. 力学与实践. 2023(01): 193-199 .
![]() | |
9. |
周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
![]() | |
10. |
李敏,齐振霄,姚昕妤,赵博华,李琦. 基于可视角度下重金属污染物在介质中的迁移规律. 环境工程学报. 2023(04): 1303-1312 .
![]() | |
11. |
马朝阳,任杰,南胜豪,徐松. 土石堤坝渗漏病险试验装置的研制及初步应用. 岩土工程学报. 2023(11): 2268-2277 .
![]() | |
12. |
侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 .
![]() | |
13. |
梁越,代磊,魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究. 岩土工程学报. 2022(06): 1133-1140 .
![]() | |
14. |
顾展飞,田光辉,王栩硕,于文搏. 地下管线渗漏对粉土地面塌陷过程的影响及实验研究. 科技创新与应用. 2022(25): 61-64 .
![]() | |
15. |
杜建明,房倩,刘翔,海路. 透明土物理模拟试验技术现状与趋势. 科学技术与工程. 2021(03): 852-861 .
![]() | |
16. |
谷敬云,罗玉龙,张兴杰,詹美礼,王媛,盛金昌. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用. 岩石力学与工程学报. 2021(06): 1287-1296 .
![]() | |
17. |
冷先伦,王川,庞荣,盛谦. 透明胶结土材料强度特性的试验研究. 岩土力学. 2021(08): 2059-2068+2077 .
![]() | |
18. |
赵宽耀,许强,刘方洲,张先林. 黄土中优势通道渗流特征研究. 岩土工程学报. 2020(05): 941-950 .
![]() |