• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HOU Tian-shun. Model for compaction density and engineering properties of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2127-2135. DOI: 10.11779/CJGE201411020
Citation: HOU Tian-shun. Model for compaction density and engineering properties of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2127-2135. DOI: 10.11779/CJGE201411020

Model for compaction density and engineering properties of light weight soil

Funds: Project (2012JQ7013) supported by Natural Science Foundation of Shaanxi Province; Project (Z109021108) supported by Special Matching Funds of Shaanxi Province; Project (QN2012025) supported by the Fundamental Research Funds for the Central Universities; PhD project (2011BSJJ084) supported by Research Foundation of Northwest A&F University
More Information
  • Received Date: November 15, 2013
  • Published Date: November 19, 2014
  • In order to study the compaction mechanism of soft inclusion soil, and to guide the prescription design and compaction construction of light weight soil, a model for compaction density is established based on material composition and the physical essence of soil compaction. It is found that the predicted value is nearly close to the measured wet density. The absolute error is only 0.003~0.051 g/cm3, and the relative error is only 0.282%~5.267%. It is proved that the model for compaction density can predict exactly the wet density of mixed soil under different compaction conditions. The compression ratio of EPS beads and the wet density of mixed soil increase with the increase of compaction times, and the increase trend becomes slow gradually, and the void ratio of mixed soil decreases with the increase of compaction times. Under compaction conditions, the increase of wet density of light weight soil is accomplished by both the deceasing pore of soil and the plastic compression of EPS beads soft inclusion. Being similar to those of light weight soil with sand, the wet density and unconfined compressive strength of light weight soil with clay increase with the increasing compaction times. When compaction time =25, the compression ratio range of EPS beads is 6.13%~11.51%; when =94, the compression ratio range is 12.80%~14.87%. It is proved that the compaction times and energy which the standard specifies are fit for the compaction of mixed soil, and will not destroy the EPS beads. Considering that the measuring process of the parameters for the model for compaction density is complex, according to the practical engineering situation, it is supposed that the water content keeps the same during the compaction process, and the holes between soil and EPS beads after compaction are close to 0. The simplified model for compaction density is put forward, and the fact that the simplified model can be fit for the practical projects completely is proved.
  • [1]
    .OH S W, LEE J K, KWON Y C, LEE B J. Bearing capacity of light weight soil using recycled styrofoam beads[C]// Proceedings of the International Offshore and Polar Engineering Conference. Kitakyushu: International Society of Offshore and Polar Engineers, 2002: 670-674.
    [2]
    .YOONZ G L, JEON S S, KIM B T. Mechanical characteristics of light-weighted soils using dredged materials[J]. Marine Georesources and Geotechnology, 2004, 22(4): 215-229.
    [3]
    YAJIMA J, MYDIN S H. Mechanical properties of the unsaturated foam composite light-weight soil[C]//4th International Conference on Unsaturated Soils. United states: American Society of Civil Engineers, 2006: 1639-1650.
    [4]
    .NAGATOME T, HASHIMOTO T, OTANI J, et al. Absorption property evaluation of light weight soil with air foam due to different mixing conditions[J]. Zairyo/Journal of the Society of Materials Science, 2010, 59(1): 68-73.
    [5]
    HOU Tian-shun. Influence of expanded polystyrene size on deformation characteristics of light weight soil[J]. Journal of Central South University, 2012, 19(11): 3320-3328.
    [6]
    MIKI H. Flow treatment technology of soil and its applications[J]. Civil Engineering Technology Data, 1995, 37(9): 32-37.
    [7]
    YOKOTA, MISHIMA N. YU Xiao-bo, translator. Foam light-weight soil[J]. Subgrade Engineering, 1997(4): 81-86.
    [8]
    .YOSHIKAWA M. YU Xiao-bo, translator. Mixed ratio test and construction of light weight filling in the water[J]. Subgrade Engineering, 1997(5): 74-78.
    [9]
    .GU Huan-da, CHEN Su. Engineering properties of river sludge and its stabilization[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 108-111. (in Chinese)
    [10]
    HOU Tian-shun. Influence law of characteristic water content on basic properties of light weight soil[J]. Rock and Soil Mechanics, 2012, 33(9): 2581-2587. (in Chinese)
    [11]
    ZHU Wei, LI Ming-dong, ZHANG Chun-lei, LI Hong. The optimum moisture content of sand EPS beads mixed lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 21-25. (in Chinese)
    [12]
    HOU Tian-shun, XU Guang-li. Optimum water content models and tests of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1129-1134. (in Chinese)
    [13]
    GB/T 50123—1999 Standard for soil test method[S]. 1999. (in Chinese)
    [14]
    LI Ming-dong, ZHU Wei, ZHANG Chun-lei, et al. Effect of compaction parameters on lightweight sand-EPS beads soil[J]. Journal of Hohai University (Natural Sciences), 2008, 36(6): 814-817. (in Chinese)
    [15]
    LI Ming-dong, ZHU Wei, ZHANG Chun-lei. A compaction model of soft inclusion soils[J]. China Civil Engineering Journal, 2009, 42(12): 149-153. (in Chinese)
    [16]
    HOU Tian-shun. Experimental study on mechanical properties of foamed particle light weight soil mixed with silt[D]. Wuhan: China University of Geosciences, 2008. (in Chinese)
    [17]
    DENG An, XIAO Yang, LIU Han-long. Engineering behavior of lightweight fills of sand-EPS beads[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1140-1145. (in Chinese)
  • Related Articles

    [1]JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029
    [2]LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005
    [3]HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611. DOI: 10.11779/CJGE202109004
    [4]XIE Jun, BAO Shu-xian, HU Ying-fei, NI Ya-jing, LI Yan-tao. Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009
    [5]CHENG Ke, MIAO Yu. Effects of loess content on dynamic shear modulus and damping ratio of Taiyuan sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 69-72. DOI: 10.11779/CJGE2019S2018
    [6]LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
    [7]BAI Li-dong, XIANG Wei, SAVIDIS A Stavros RACKWITZ Frank, SAVIDIS A Stavros RACKWITZ Frank. Resonant column and bender element tests on maximum shear modulus of dry sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188.
    [8]CHI Shichun, GUO Xiaoxia, YANG Jun, LIN Gao. Small strain characteristics and threshold strain of dynamic Hardin-Drnevich model for soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 243-249.
    [9]YUAN Xiaoming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 264-269.
    [10]Shi Zhaoji, Feng Wanling, Zhang Zhanji. The Measurement of Dynamic Young's Modulus by Resonant Column Method[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(6): 25-32.
  • Cited by

    Periodical cited type(18)

    1. 倪小东,张宇科,陆江发,崔允亮. 地层局部沉陷诱发有压管道渗透侵蚀机制研究. 华中科技大学学报(自然科学版). 2025(02): 17-24 .
    2. 王晓璞,赵海龙,任玲玲,高岩岩,薛东兴,山河,王斌,姚传进,赵建,白英睿. 结合人工智能图像识别的微塑料运移与滞留微观可视化实验方法. 实验技术与管理. 2025(04): 14-19 .
    3. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    4. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    5. 刘江涛,李存军,于江华,张彦红,张春彬,孔纲强. 施工顺序对微型钢管桩加固既有基础变形的影响试验研究. 土木与环境工程学报(中英文). 2024(04): 100-108 .
    6. 梁越,何慧汝,许彬,张鑫强,冉裕星. 基于透明土的水力梯度对渗流侵蚀影响试验研究. 河海大学学报(自然科学版). 2024(05): 60-66 .
    7. 徐春瑞,郭畅,黄博. 孔隙率对砂土渗透稳定性影响的内部可视化研究. 地基处理. 2024(05): 451-462 .
    8. 王宇,陈从建,钱声源,段祥宝,谷艳昌. 可视化渗透破坏实验装置研发及土力学实践探索. 力学与实践. 2023(01): 193-199 .
    9. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
    10. 李敏,齐振霄,姚昕妤,赵博华,李琦. 基于可视角度下重金属污染物在介质中的迁移规律. 环境工程学报. 2023(04): 1303-1312 .
    11. 马朝阳,任杰,南胜豪,徐松. 土石堤坝渗漏病险试验装置的研制及初步应用. 岩土工程学报. 2023(11): 2268-2277 . 本站查看
    12. 侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 .
    13. 梁越,代磊,魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究. 岩土工程学报. 2022(06): 1133-1140 . 本站查看
    14. 顾展飞,田光辉,王栩硕,于文搏. 地下管线渗漏对粉土地面塌陷过程的影响及实验研究. 科技创新与应用. 2022(25): 61-64 .
    15. 杜建明,房倩,刘翔,海路. 透明土物理模拟试验技术现状与趋势. 科学技术与工程. 2021(03): 852-861 .
    16. 谷敬云,罗玉龙,张兴杰,詹美礼,王媛,盛金昌. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用. 岩石力学与工程学报. 2021(06): 1287-1296 .
    17. 冷先伦,王川,庞荣,盛谦. 透明胶结土材料强度特性的试验研究. 岩土力学. 2021(08): 2059-2068+2077 .
    18. 赵宽耀,许强,刘方洲,张先林. 黄土中优势通道渗流特征研究. 岩土工程学报. 2020(05): 941-950 . 本站查看

    Other cited types(11)

Catalog

    Article views (403) PDF downloads (257) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return