• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611. DOI: 10.11779/CJGE202109004
Citation: HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611. DOI: 10.11779/CJGE202109004

Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles

More Information
  • Received Date: October 24, 2020
  • Available Online: December 02, 2022
  • To investigate the dynamic deformation characteristics of light weight soil mixed with EPS particles, the influences of different mixed ratios and confining pressures on the backbone curve and the parameters of Hardin-Drnevich model for light weight soil are studied through the dynamic triaxial tests, and the modified Hardin-Drnevich model is established and verified. The results show that the backbone curve of light weight soil exhibits obvious nonlinear and strain-hardening characteristics. The relationship between reciprocal of dynamic shear modulus and shear strain of light weight soil increases linearly, indicating that the dynamic deformation characteristics of light weight soil can be described by the Hardin-Drnevich model. The reciprocal of the maximum dynamic shear modulus and that of the maximum dynamic shear stress decrease with the increase of confining pressure and cement content, and increase with the increase of volume ratio of EPS particles. On the basis of the Hardin formula, the expression for model parameters is proposed by introducing the relative structure k and the generalized pore ratio e', and the modified Hardin-Drnevich model is established. By changing the stress state and stress path, the relative error between the calculated value and the test value is less than 11%. The predicted results by the modified Hardin-Drnevich model for the backbone curves of light weight soil are good, which shows that the modified Hardin-Drnevich model can describe the dynamic response of the special structure of light weight soil under complex stress conditions.
  • [1]
    侯天顺, 徐光黎. 发泡颗粒混合轻量土三轴应力-应变-孔压特性试验[J]. 中国公路学报, 2009, 22(6): 10-17. doi: 10.3321/j.issn:1001-7372.2009.06.002

    HOU Tian-shun, XU Guang-li. Experiment on triaxial pore water pressure-stress-strain characteristics of foamed particle light weight soil[J]. China Journal of Highway and Transport, 2009, 22(6): 10-17. (in Chinese) doi: 10.3321/j.issn:1001-7372.2009.06.002
    [2]
    侯天顺, 徐光黎. 发泡颗粒混合轻量土抗剪强度特性试验研究[J]. 中国矿业大学学报, 2010, 39(4): 534-540. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201004011.htm

    HOU Tian-shun, XU Guang-li. Experimental study on the shear strength characteristics of foamed particle light weight soil[J]. Journal of China University of Mining & Technology, 2010, 39(4): 534-540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201004011.htm
    [3]
    HOU T S. Influence of expanded polystyrene size on deformation characteristics of light weight soil[J]. Journal of Central South University, 2012, 19(11): 3320-3328. doi: 10.1007/s11771-012-1410-x
    [4]
    HOU T S. Model for compaction density and engineering properties of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2127-2135. doi: 10.11779/CJGE201411020
    [5]
    谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 2011.

    XIE Ding-yi. Soil Dynamics[M]. Xi'an: Xi'an Jiaotong University Press, 2011. (in Chinese)
    [6]
    HARDIN B O, BLACK W L. Vibration modulus of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(2): 353-369. doi: 10.1061/JSFEAQ.0001100
    [7]
    SEED H B, IDRISS I M. Soil Modulus and Damping Factors for Dynamic Response Analysis[R]. California: Earthquake Engineering Research Center, University of California, EERC70-10, 1970.
    [8]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
    [9]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: measurement and parameter effects[J]. ASCE, J Soil Mech Found Div, 1972, 98(SM6): 603-624.
    [10]
    胡文尧, 王天龙. 关于黏性土剪切模量和阻尼比与剪应变关系模型中的参数[J]. 同济大学学报(自然科学版), 1982(2): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ198202005.htm

    HU Wen-yao, WANG Tian-long. Parameters of dynamic stress-strain models for cohesive soil[J]. Journal of Tongji University (Natural Science), 1982(2): 53-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ198202005.htm
    [11]
    郑大同, 王惠昌. 循环荷载作用下土的非线性应力应变模型[J]. 岩土工程学报, 1983, 5(1): 65-76. doi: 10.3321/j.issn:1000-4548.1983.01.006

    ZHENG Da-tong, WANG Hui-chang. Nonlinear stress-strain model of soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(1): 65-76. (in Chinese) doi: 10.3321/j.issn:1000-4548.1983.01.006
    [12]
    陈国兴, 谢君斐, 张克绪. 土的动模量和阻尼比的经验估计[J]. 地震工程与工程振动, 1995, 15(1): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199501008.htm

    CHEN Guo-xing, XIE Jun-fei, ZHANG Ke-xu. Empirical estimation of dynamic modulus and damping ratio of soil[J]. Earthquake Engineering and Engineering Vibration, 1995, 15(1): 73-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199501008.htm
    [13]
    刘雪珠, 陈国兴, 胡庆兴. 南京地区新近沉积土的动剪切模量和阻尼比的初步研究[J]. 地震工程与工程振动, 2002, 22(5): 127-132. doi: 10.3969/j.issn.1000-1301.2002.05.023

    LIU Xue-zhu, CHEN Guo-xing, HU Qing-xing. Primary study on dynamic shear modulus and damping ratio of recently deposited soil in area of Nanjing[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(5): 127-132. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.05.023
    [14]
    陈国兴, 刘雪珠. 南京及邻近地区新近沉积土的动剪切模量和阻尼比的试验研究[J]. 岩石力学与工程学报, 2004, 23(8): 1403-1410. doi: 10.3321/j.issn:1000-6915.2004.08.033

    CHEN Guo-xing, LIU Xue-zhu. Testing study on ratio of dynamic shear moduli and ratio of damping for recently deposited soils in Nanjing and its neighboring areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1403-1410. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.08.033
    [15]
    YUAN X M, SUN J, SUN R. Effect of consolidation ratios on maximum dynamic shear modulus of sands[J]. Earthquake Engineering and Engineering Vibration, 2005, 4(1): 59-68. doi: 10.1007/s11803-005-0024-9
    [16]
    袁晓铭, 孙静. 非等向固结下砂土最大动剪切模量增长模式及Hardin公式修正[J]. 岩土工程学报, 2005, 27(3): 264-269. doi: 10.3321/j.issn:1000-4548.2005.03.004

    YUAN Xiao-ming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 264-269. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.03.004
    [17]
    雷华阳, 姜岩, 陆培毅, 等. 交通荷载作用下结构性软土动本构关系的试验研究[J]. 岩土力学, 2009, 30(12): 3788-3792. doi: 10.3969/j.issn.1000-7598.2009.12.039

    LEI Hua-yang, JIANG Yan, LU Pei-yi, et al. Experimental study of dynamic constitutive relation of structural soft soils under traffic loading[J]. Rock and Soil Mechanics, 2009, 30(12): 3788-3792. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.12.039
    [18]
    孙锐, 于啸波, 袁晓铭, 等. 季冻区典型土类动剪切模量阻尼比计算方法[J]. 岩土工程学报, 2017, 39(1): 116-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701012.htm

    SUN Rui, YU Xiao-bo, YUAN Xiao-ming, et al. Method for dynamic shear moduli and damping ratio of typical soils in seasonal frozen region[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 116-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701012.htm
    [19]
    姬凤玲, 吕擎峰, 李明东. 疏浚淤泥EPS颗粒轻质混合土本构模型研究[J]. 深圳大学学报, 2006, 23(3): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL200603001.htm

    JI Feng-ling, LÜ Qing-feng, LI Ming-dong. Study on the constitutive model of lightweight EPS-bead-treated soil made from silt[J]. Journal of Shenzhen University (Science and Engineering), 2006, 23(3): 195-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL200603001.htm
    [20]
    黎冰. 动荷载下黏土与EPS颗粒混合轻质土的变形和强度特性试验研究[D]. 南京: 河海大学, 2007.

    LI Bing. Experimental Study on the Deformation and Strength Properties of Light Weight Clay-EPS Beads Soil Under Cyclic Loading[D]. Nanjing: Hohai University, 2007. (in Chinese)
    [21]
    GAO Y F, WANG S M, CHEN C B. A united deformation- strength framework for light weight sand-EPS beads soil (LSES) under cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1144-1153. doi: 10.1016/j.soildyn.2011.04.002
    [22]
    GAO H M, BU C Y, WANG Z H, et al. Dynamic characteristics of expanded polystyrene composite soil under traffic loadings considering initial consolidation state[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 86-98.
    [23]
    HU Y, GAO H M, WANG Z H, et al. Dynamic modulus and damping ratio of EPS composite soil under small strain condition[C]//Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2017, Rhodes Island.
    [24]
    HOU T S, PEI Z W, LUO Y S, et al. Study on the dynamic constitutive relationship of EPS particles light weight soil based on hardin-drnevich model[J]. Geotechnical and Geological Engineering, 2020, 38(2): 1785-1798.
    [25]
    土工试验方法标准:GB/T50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T50123—2019[S]. 2019. (in Chinese)
    [26]
    KONDNER R L. Hyperbolic stress-strain responses: Cohesive soils[J]. Journal of soil Mechanics and Foundation Division, ASCE, 1964, 89(1): 126-127.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return