• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZHAO Kuan-yao, XU Qiang, LIU Fang-zhou, ZHANG Xian-lin. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941-950. DOI: 10.11779/CJGE202005017
Citation: ZHAO Kuan-yao, XU Qiang, LIU Fang-zhou, ZHANG Xian-lin. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941-950. DOI: 10.11779/CJGE202005017

Seepage characteristics of preferential flow in loess

More Information
  • Received Date: August 15, 2019
  • Available Online: December 07, 2022
  • The water infiltration in loess slopes is of great significance for the change of physical and mechanical properties of soil. There are many preferential channels in loess and the study on the preferential flow is crucial for the understanding of water infiltration process in loess. The distribution of fractures especially the microscale fractures is detected by using the electrical resistivity tomography (ERT) and geological radar. Furthermore an in-situ single-ring infiltrometer test is carried out in the hidden fracture areas to monitor the infiltration process. Based on the in-situ test results, a single-permeability model and a dual-permeability model are set up to simulate the infiltration process in the preferential channel. The conclusions can be drawn as follows: (1) The hidden fractures in loess are significant for the preferential flow which is always ignored in the engineering. (2) The in-situ infiltration process in preferential flow channels is revealed: the water infiltrates into the fractures first, then the unsaturated infiltration process begins, and water infiltrates downwards uniformly, at the same time the water in the preferential flow channels spreads into the matrix flow area. (3) The numerical method simulates two types of irrigation conditions: high intensity with a short duration and low intensity with a long duration. For the high intensity case, the preferential flow dominates and it has a positive effect on the infiltration, and the irrigation water infiltrates quickly into the deep soil and induces the increase of groundwater with the top matrix domain unsaturated. For the low intensity case, the matrix flow dominates and it has a saturated infiltration state.
  • [1]
    周葆春, 陈志. 压实膨胀土非饱和渗水系数函数的密度与水力滞回效应[J]. 岩土工程学报, 2019, 41(10): 1800-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910004.htm

    ZHOU Bao-chun, CHEN Zhi. Effects of density and hysteresis on hydraulic conductivity function of compacted expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1800-1808. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910004.htm
    [2]
    胡海军. 增湿情况重塑黄土非饱和渗透系数的测定方法研究[J]. 水利学报, 2018, 49(10): 1216-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201810005.htm

    HU Hai-jun. Study on the method for determining the unsaturated permeability coefficient of loess in humidificatio[J]. Journal of Hydraulic Engineering, 2018, 49(10): 1216-1226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201810005.htm
    [3]
    洪勃, 李喜安, 陈广东, 等. 重塑马兰黄土渗透性试验研究[J]. 工程地质学报, 2016, 24(2): 276-283. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201602017.htm

    HONG Bo, LI Xi-an, CHEN Guang-dong, et al. Experimental study of permeability of remolded Malan loess[J]. Journal of Engineering Geology, 2016, 24(2): 276-283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201602017.htm
    [4]
    王铁行, 杨涛, 鲁洁. 干密度及冻融循环对黄土渗透性的各向异性影响[J]. 岩土力学, 2016, 37(增刊1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1009.htm

    WANG Tie-hang, YANG Tao, LU Jie. Influence of dry density and freezing-thawing cycles on anisotropic permeability of loess[J]. Rock and Soil Mechanics, 2016, 37(S1): 72-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1009.htm
    [5]
    赵宽耀, 许强, 张先林, 等. 黑方台浅层黄土渗透特性对比试验研究[J]. 工程地质学报, 2018, 26(2): 459-466. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802023.htm

    ZHAO Kuan-yao, XU Qiang, ZHANG Xian-lin, et al. The research on the infiltration characteristics in the topsoil of Heifangtai in Gansu Province[J]. Engineering Geology. 2018, 26(2): 459-466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802023.htm
    [6]
    梁燕, 邢鲜丽, 李同录, 等. 晚更新世黄土渗透性的各向异性及其机制研究[J]. 岩土力学, 2012, 33(5): 1313-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205005.htm

    LIANG Yan, XING Xian-li, LI Tong-lu, et al. Study of the anisotropic permeability and mechanism of Q3 loess[J]. Rock and Soil Mechanics, 2012, 33(5): 1313-1318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205005.htm
    [7]
    张晓周, 卢婷, 卢玉东, 等. 扫描电镜下泾阳南塬马兰黄土的孔隙特征[J]. 水土保持通报, 2018, 38(3): 212-216. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201803034.htm

    ZHANG Xiao-zhou, LU Ting, LU Yu-dong, et al. Characteristics of malan loess porosity in south Jingyang plateau under scanning electron microscope[J]. Soil and water Conservation bulletin, 2018, 38(3): 212-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201803034.htm
    [8]
    延恺, 谷天峰, 王家鼎, 等. 基于显微CT图像的黄土微结构研究[J]. 水文地质工程地质, 2018, 55(5): 1098-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201803009.htm

    YAN Kai, GU Tian-feng, WANG Jia-ding, et al. A study of the micro-configuration of loess based on micro-CT images[J]. Journal of Soil Science, 2018, 55(5): 1098-1107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201803009.htm
    [9]
    徐世民, 吴志坚, 赵文琛, 等. 基于Matlab和IPP的黄土孔隙微观结构研究[J]. 地震工程学报, 2017, 39(1): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201701012.htm

    XU Shi-ming, WU Zhi-jian, ZHAO wen-chen, et al. Study on microstructure of loess porosity based on Matlab and IPP[J]. Journal of Earthquake Engineering, 2017, 39(1): 80-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201701012.htm
    [10]
    胡再强, 沈珠江. 非饱和黄土的结构性研究[J]. 岩石力学与工程学报, 2000, 19(6): 775-775. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200006018.htm

    HU Zai-qiang, SHEN Zhu-jiang. Structural study of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 775-775. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200006018.htm
    [11]
    张泽, 周泓, 秦琦, 等. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版), 2017, 47(3): 839-847. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201703017.htm

    ZHANG Ze, ZHOU Hong, QIN Qi, et al. Experimental study on porosity characteristics of loess under freezing-thawing cycle[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3): 839-847. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201703017.htm
    [12]
    鞠忻倪. 黄土沟壑区不同地形部位土壤大孔隙特征研究[J]. 土壤学报, 2018, 55(5): 1098-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201805006.htm

    JU Xin-ni. Characteristics of soil macropore in different topographical parts of the loess plateau[J]. Journal of Soil Science, 2018, 55(5): 1098-1107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201805006.htm
    [13]
    张耀, 胡再强, 陈昊, 等. 酸性溶液对黄土结构改良的试验研究[J]. 岩土工程学报, 2018, 40(4): 681-688. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804018.htm

    ZHANG Yao, HU Zai-qiang, CHEN Hao, et al. Experimental study on evolution of loess structure using acid solutions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 681-688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804018.htm
    [14]
    李佳, 高广运, 黄雪峰, 等. 非饱和原状黄土边坡浸水试验研究[J]. 岩土力学与工程学报, 2011, 30(5): 1043-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105023.htm

    LI Jia, GAO Guang-yuan, HUANG Xue-feng, et al. Experimental study on water immersion in unsaturated undisturbed loess slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1043-1048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105023.htm
    [15]
    卢靖, 程彬. 非饱和黄土土水特征曲线的研究[J]. 岩土工程学报, 2007, 29(10): 1591-1592. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200710030.htm

    LU Jing, CHENG Bin. Research on soil-water characteristic curve of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1591-1592. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200710030.htm
    [16]
    王铁行, 李宁, 谢定义. 非饱和黄土重力势、基质势和温度势探讨[J]. 岩土工程学报, 2004, 26(5): 715-718. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405029.htm

    WANG Tie-hang, LI Ning, XIE Ding-yi. GravitationaI potential, matrlx suction and thermal potentiaI of unsaturated loess soil[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 715-718. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405029.htm
    [17]
    谌文武. 基于不同渗透持时的非饱和黄土渗透系数预测分析[J]. 岩土工程学报, 2018, 40(增刊1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1005.htm

    ZHAN Wen-wu. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1005.htm
    [18]
    李萍, 李同录, 王阿丹, 等. 黄土中水分迁移规律现场试验研究[J]. 岩土力学, 2013, 34(5): 1331-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305016.htm

    LI Ping, LI Tong-lu, WANG A-dan, et al. Field experimental study on the law of water migration in loess[J]. Rock and Soil Mechanics, 2013, 34(5): 1331-1339. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305016.htm
    [19]
    李萍, 李同录, 王红, 等. 非饱和黄土土–水特征曲线与渗透系数Childs &Collis-Geroge模型预测[J]. 岩土力学, 2013, 34(增刊2): 184-189.

    LI Ping, LI Tong-lu, WANG Hong, et al. Prediction of soil-water characteristic curve and permeability coefficient of unsaturated loess with Childs & Collis-Geroge model[J]. Rock and Soil Mechanics, 2013, 34(S2): 184-189. (in Chinese)
    [20]
    穆青翼, 党影杰, 董琪, 等. 原状和压实黄土持水特性及湿陷性对比试验研究[J]. 岩土工程学报, 2019, 41(8): 1496-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908017.htm

    MU Qing-yi, DANG Ying-jie, DONG Qi, et al. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019,41(8): 1496-1504. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908017.htm
    [21]
    许领, 李宏杰, 吴多贤. 黄土台缘滑坡地表水入渗问题分析[J]. 中国地质灾害与防治学报, 2008, 19(2): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200802006.htm

    XU Ling, LI Hong-jie, WU Duo-xian. Discussion on infiltration of surface water and their significance to terrace loess landslides[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(2): 32-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200802006.htm
    [22]
    杨博, 张虎元, 赵天宇, 等. 改性黄土渗透性与孔隙结构的依存关系[J]. 水文地质工程地质, 2011, 38(6): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201106018.htm

    YNAG Bo, ZHANG Hu-yuan, ZHAO Tina-yu, et al. Responsibility of permeability of modified loess soil on microstructure[J]. Hydrogeology & Engineering Geology, 2011, 38(6): 96-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201106018.htm
    [23]
    亓星, 许强, 李斌, 等. 甘肃黑方台黄土滑坡地表水入渗机制初步研究[J]. 工程地质学报, 2016, 24(3): 418-424. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603012.htm

    QI Xing, XU Qiang, LI Bin, et al. Preliminary study on mechanism of surface water infiltration at Heifangtai loess landslides in Gansu[J]. Journal of Engineering Geology, 2016, 24(3): 418-424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603012.htm
    [24]
    张建丰, 林性粹, 王文焰. 黄土的大孔隙特征和大孔隙流研究[J]. 水土保持学报, 2003, 17(4): 168-171. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200304046.htm

    ZHANG Jian-feng, LIN Xing-cui, WANG Wen-yan. Study on the large pore characteristics and large pore flow of loess[J]. Journal of Soil and Water Conservation, 2003, 17(4): 168-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200304046.htm
    [25]
    王铁行. 非饱和黄土路基水分场的数值分析[J]. 岩土工程学报, 2008, 30(1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200801008.htm

    WANG Tie-hang, Moisture migration in unsaturated loess subgrade[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 41-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200801008.htm
    [26]
    梁越. 孔隙流动数值模拟建模方法及孔隙流速分布规律[J]. 岩土工程学报, 2011, 33(7): 1104-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107018.htm

    LIANG Yue. Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107018.htm
    [27]
    张爱军, 康顺祥, 李鹏. 黄土滑坡体立体排水系统的三向渗流数值模拟[J]. 水土保持通报, 2004, 24(6): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200406002.htm

    ZHANG Ai-jun, KANG Shun-xiang, LI Peng. 3D seepage numerical analysis of three-dimensional drainage system in loess landsliding body[J]. Soil and Water Conservation Bulletin, 2004, 24(6): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200406002.htm
    [28]
    孙萍萍, 张茂省, 董英, 等. 甘肃永靖黑方台灌区潜水渗流场与斜坡稳定性耦合分析[J]. 地质通报, 2013, 32(6): 887-892. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201306010.htm

    SUN Ping-ping, ZHANG Mao-sheng, DONG Yin, et al. The coupled analysis of phreafic water flow and slope stability at Heifangtal terrace, Gansu Province[J]. Geological Bulletin of China, 2013, 32(6): 887-892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201306010.htm
    [29]
    梁越, 陈鹏飞, 林加定, 等. 基于透明土技术的多孔介质孔隙流动特性研究[J]. 岩土工程学报, 2019, 41(7): 1361-1366. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907025.htm

    LIANG Yue, CHEN Peng-fei, LIN Jia-ding, et al. Pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361-1366. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907025.htm
    [30]
    SHAO W, BOGAARD T A, BAKKER M, et al. Quantification of the influence of preferential flow on slope stability using a numerical modelling approach[J]. Hydrol Earth Syst Sci 2015, 19: 2197-2212. doi: 10.5194/hess-19-2197-2015.
    [31]
    VOGEL T, GERKE H H, ZHANG R, et al. Modeling flow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties[J]. J Hydrol, 2000, 238: 78-89.
    [32]
    赵宽耀, 许强. 一种适用于双环入渗的改进装置: ZL201820627927.1[P]. 2018-12-04.
    [33]
    水利水电工程注水试验规程:SL345—2007[S]. 2007.

    Water Injection and Hydropower Engineering Water Injection Test Regulations: SL345—2007[S]. 2007. (in Chinese)
    [34]
    GERKE H H, VAN GENUCHTEN M. A dual porosity model for simulating the preferential movement of water and solutes in structured porous media[J]. Water Resour Res, 1993, 29: 305-319.
    [35]
    RAY C, ELLSWORTH T R, VALOCCHI A J, et al. An improved dual porosity model for chemical transport in macrop- orous soils[J]. J Hydrol, 1997, 193: 270-292.
    [36]
    ARORA B, MOHANTY B P, MCGUIRE J T. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities[J]. Water Resour Res, 2011, 47, W04512, doi: 10.1029/2010WR009451.
    [37]
    LAINE-KAULIO H, BACKNÄS S, KARVONEN T, et al. Lateral subsurface stormflow and solute transport in a forested hillslope: a combined measurement and modeling approach[J]. Water Resour Res, 2014, 50: 8159-8178.
    [38]
    BROOKS R, COREY A. Hydraulic Properties of Porous Media[D]. Colorado: Colorado State University, 1964.
  • Related Articles

    [1]QIU Junling, JIA Ding, LAI Jinxing, TANG Kunjie, QIANG Lei. Dual-channel seepage model for tunnels with fissured soil under rainfall infiltration[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 548-558. DOI: 10.11779/CJGE20231215
    [2]XIAO Zhiyong, SUN Xiaoxiang, WANG Gang, WANG Mingzhen, JIA Wenwen, JIANG Feng, ZHENG Chengcheng. Model for non-equilibrium evolution coal permeability of whole process under influences of gas pressure difference[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 355-364. DOI: 10.11779/CJGE20231012
    [3]Visual experimental study on the coupling process of seepage-erosion in rough fracture and the evolution of permeability[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240363
    [4]ZHANG Zhao, ZHU Liangyu, LI Guangyao, YUAN Haoyu, GAO Shuaidong, HAN Huaqiang, LIU Fengyin, QI Jilin. Analytical model for preferential infiltration into cracks in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1831-1840. DOI: 10.11779/CJGE20220856
    [5]WANG Nian-xiang, REN Guo-feng, GU Xing-wen. Permeability similarity of soils in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 66-70. DOI: 10.11779/CJGE2022S2015
    [6]ZHAO Zhi-qiang, DAI Fu-chu, MIN Hong, TU Xin-bin. Field tests on irrigation infiltration in thick loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 569-575. DOI: 10.11779/CJGE202203019
    [7]ZHOU Yin-kang, YAN Chang-hong, ZHENG Jun, XIE Sheng-hua, XIANG Guo-sheng. Mesoscale model for thermal conductivity of compacted dual-porosity bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1352-1359. DOI: 10.11779/CJGE202107022
    [8]LIU Wu, ZHANG Zhen-hua, YE Xiao-dong, CHEN Yi-feng. Multi-scale permeability evolution model for layered rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 68-72. DOI: 10.11779/CJGE2018S2014
    [9]LIU Xian-shan, WANG Ke, XU Ming. Permeability evolution of low-permeability reservoir sandstone considering hydraulic-mechanical-damage coupling effect during gradual fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1584-1592. DOI: 10.11779/CJGE201809003
    [10]KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004
  • Cited by

    Periodical cited type(20)

    1. 张文栋,程岩,袁武立,郑龙浩. 降雨作用下黄土基岩滑坡变形特征及演化规律. 陕西水利. 2025(04): 112-114+126 .
    2. 许博闻,兰恒星,刘世杰. 界面形态对黄土-泥岩接触面剪切力学特性影响研究. 工程地质学报. 2024(02): 448-462 .
    3. 黄晓虎,魏兆亨,易武,郭飞,黄海峰,肖宇煌. 裂隙优势流入渗诱发堆积层滑坡浅层破坏机理研究. 岩土工程学报. 2024(06): 1136-1145 . 本站查看
    4. 赵宽耀,许强,陈婉琳,彭大雷,高登辉. 黄土塬边漫灌区土体水入渗过程研究. 岩土力学. 2024(09): 2754-2764 .
    5. 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究. 中国地质灾害与防治学报. 2024(05): 21-31 .
    6. 王诏楷. 地下水人工回灌颗粒沉积研究进展. 江淮水利科技. 2023(01): 9-14 .
    7. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
    8. 吴玮江,宋丙辉,刘迪,安亚鹏. 黄土塬区包气带水分运移特征研究. 水文地质工程地质. 2023(03): 12-22 .
    9. 曾鹏,王宇豪,张天龙,张琳,南骁聪. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测. 地球科学. 2023(05): 1675-1685 .
    10. 冯乐涛,吴玮江,刘兴荣,宿星,万朝东. 黄土高原降水入渗方式与引发滑坡研究——以甘肃黄土地区为例. 科学技术与工程. 2023(14): 5937-5945 .
    11. 许增光,李海洋,柴军瑞,曹成,陈东来. 堤坝内集中渗漏通道与周围介质水量交换研究. 水力发电学报. 2023(07): 12-23 .
    12. 赵宽耀,许强,高登辉,刘方洲,彭大雷,陈婉琳. 坡底饱和型黄土滑坡离心模拟试验. 岩土力学. 2023(11): 3213-3223 .
    13. 赵鲁庆,彭建兵,马鹏辉,冷艳秋,朱兴华. 黄土细观界面及其灾害效应研究初探. 工程地质学报. 2023(06): 1783-1798 .
    14. 许强,陈婉琳,蒲川豪,袁爽,刘佳良. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践. 工程地质学报. 2022(04): 1179-1192 .
    15. 宁瑞浩,冷艳秋,何芝远,李泽坤,马哲. 基于CT的黄土孔隙尺度优先流特性. 科学技术与工程. 2022(23): 9927-9936 .
    16. 蒋小虎,黄跃廷,胡海军,陈铄,陈锐,王崇华,汪慧,康顺祥. 基于原位双环、试坑浸水试验和数值模拟反演的Q_3黄土饱和渗透系数对比研究. 岩土力学. 2022(11): 2941-2951 .
    17. 李同录,汪颖,胡向阳,李萍,王宇. 厚层非饱和黄土中优势流和活塞流的讨论. 工程地质学报. 2022(06): 1842-1848 .
    18. 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响. 岩石力学与工程学报. 2021(04): 777-789 .
    19. 孙恒飞,朱兴华,成玉祥,张智锋,张卜平,蔡佳乐. 黄土优势渗流研究进展与展望. 自然灾害学报. 2021(06): 1-12 .
    20. 侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 .

    Other cited types(23)

Catalog

    Article views (470) PDF downloads (433) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return