• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
Citation: LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024

Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea

More Information
  • Received Date: September 09, 2018
  • Published Date: September 24, 2019
  • The dynamic shear modulus and damping ratio are two important parameters for the dynamic stability analysis of geotechnical structures and offshore sites. In order to evaluate the dynamic characteristics of calcareous sand in the offshore sites, the resonant column tests are performed on the calcareous sand by GCTS resonant column apparatus. Meanwhile, the effects of effective confining pressure and relative density on the dynamic shear modulus and damping ratio are investigated and compared with those of the quartz sand. It is found that the calcareous sand shows higher maximum dynamic shear modulus, higher damping ratio, and faster stiffness degradation than the quartz sand under similar states of effective confining pressure and relative density. Generally speaking, the calcareous sand shows higher Gmax than the quartz sand when the shear strain is less than 0.1%. Finally, a mathematical model for the normalized dynamic shear modulus and damping ratio of the calcareous sand is established according to the test results in this study. Based on the existing researches on the calcareous sand, the variation ranges of the normalized dynamic shear modulus and damping ratio of the calcareous sand are given, and they may provide the basis for the dynamic stability analysis of buildings in the construction of calcareous sand sites.
  • [1]
    沈建华, 汪稔. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 2010, 18(增刊1): 26-32.
    (SHEN Jian-hua, WANG Ren.Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 2010, 18(S1): 26-32. (in Chinese))
    [2]
    金宗川, 陈伟俊, 王新志, 等. 南海钙质砂的休止角与工程应用[J]. 岩土力学, 2018, 39(7): 1-9.
    (JIN Zong-chuan, CHEN Wei-jun, WANG Xin-zhi, et al.Study on engineering application of natural repose angle of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(7): 1-9. (in Chinese))
    [3]
    张炜, 李亚, 周松望, 等. 南海北部区域黏土循环动力特性试验研究[J]. 岩土力学, 2018, 39(7): 1-11.
    (ZHANG Wei, LI Ya, ZHOU Song-wang, et al.Experimental research on cyclic behaviors of clay in the northern region of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(7): 1-11. (in Chinese))
    [4]
    虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11.
    (YU Hai-zhen, WANG Ren.The cyclic strength test research on calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese))
    [5]
    李建国. 波浪荷载下饱和钙质砂动力特性的试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005.
    (LI Jian-guo.Experimental research on dynamic behavior of saturated calcareous sand under wave loading[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2005. (in Chinese))
    [6]
    刘汉龙, 胡鼎, 肖杨, 等. 钙质砂动力液化特性的试验研究[J]. 防灾减灾工程学报, 2015, 35(6): 707-711.
    (LIU Han-long, HU Ding, XIAO Yang, et al.Test study on dynamic liquefaction characteristics of calcareous sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(6): 707-711. (in Chinese))
    [7]
    HYODO M, ARAMAKI N, ITOH M, et al.Cyclic strength and deformation of crushable carbonate sand[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(5): 331-336.
    [8]
    MAO X, FAHEY M.Behaviour of calcareous soils in undrained cyclic simple shear[J]. Géotechnique, 2003, 53(8): 715-727.
    [9]
    SANDOVAL E A, PANDO M A, OLGUN C G.Liquefaction susceptibility of a calcareous sand from southwest Puerto Rico[C]// Proceedings of the 5th International Conference on Earthquake Geotechnical Engineering. Santiago, 2011.
    [10]
    SANDOVAL E A, PANDO M A.Experimental assessment of the liquefaction resistance of calcareous biogenous sands[J]. Earth Sciences Research Journal, 2012, 16(1): 55-63.
    [11]
    PORCINO D, CARIDI G, GHIONNA V N.Undrained monotonic and cyclic simple shear behavior of carbonate sand[J]. Géotechnique, 2008, 58(8): 635-644.
    [12]
    PORCINO D, MARCIANO V.Evaluating liquefaction resistance of a calcareous sand using the cone penetration test[C]// Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, California, 2010: 1-9.
    [13]
    CARRARO J A H, BORTOLOTTO M S. Stiffness degradation and damping of carbonate and silica sands[C]// Frontiers in Offshore Geotechnics Ⅲ-Meyer, Taylor & Francis Group. London, 2015: 1179-1183.
    [14]
    WANG Yan-ning.Dynamic properties of fine liquefiable sand and calcareous sand from resonant column testing[D]. Austin: The University of Texas at Austin, 2015.
    [15]
    GIANG P H H, PETER O V I, WILLIAM F V I, et al. Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 371-379.
    [16]
    ISHIHARA K.Soil behaviour in earthquake geotechnics[M]. New York: Oxford University Press, 1996.
    [17]
    SL 237—1999土工试验规程[S]. 1999. (SL 237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [18]
    贺为民, 李德庆, 杨杰, 等. 土的动剪切模量、阻尼比和泊松比研究进展[J]. 地震工程学报, 2016, 38(2): 309-317.
    (HE Wei-min, LI De-qing, YANG Jie, et al.Recent progress in research on dynamic shear modulus, damping ratio, and poisson ration of soils[J]. China Earthquake Engineering Journal, 2016, 38(2): 309-317. (in Chinese))
    [19]
    SEED H B, IDRISS I M.Soil moduli and damping factors for dynamic analysis [R]. Berkeley: University of California, 1970.
    [20]
    SEED H B, WONG R T, IDRISS I M, et al.Moduli and damping factors for dynamic analyses of cohesionless soils[J]. Journal of Geotechnical Engineering, 1986, 112(11): 1016-1032.
    [21]
    ROLLINS K M, EVANS M D, DIEHL N B, et al.Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 398-405.
    [22]
    IWASAKI T, TATSUOKA F, TAKAGI Y.Shear moduli of sands under cyclic torsional shear loading[J]. Soils and Foundations, 1978, 18(1): 39-56.
    [23]
    KOKUSHO T.Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60.
    [24]
    NI S H. Dynamic properties of sand under true triaxial stress states from resonant column/torsional shear tests[D].4 ]NI S H. Dynamic properties of sand under true triaxial stress states from resonant column/torsional shear tests[D]. Austin: The University of Texas at Austin, 1987.
    [25]
    ISHIBASHI I, ZHANG X.Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soils and Foundations, 1993, 33(1): 182-191.
    [26]
    EPRI. Guidelines for determining design basis ground motions-volume 2: appendices for ground motion estimation[R]. Palo Alto: Electric Power Research Institute, 1993.
    [27]
    DARENDELI M B, STOKOE K H, RATHJE E M, et al.Importance of confining pressure on nonlinear soil behavior and its impact on earthquake response predictions of deep sites[C]// Proceedings of the XVth International Conference on Soil Mechanics and Geotechnical Engineering. Istanbul, 2001: 2811-2814.
    [28]
    祝龙根, 徐存森. 共振柱仪及其在工程中的应用[J]. 大坝观测与土工测试, 1993, 17(2): 32-37.
    (ZHU Long-gen, XU Cun-sen.The resonant column device and its application in engineering[J]. Dam Observation and Geotechnical Tests, 1993, 17(2): 32-37. (in Chinese))
    [29]
    袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139.
    (YUAN Xiao-ming, SUN Rui, SUN Jing, et al.Laboratory experimental study on dynamic shear modulus ratio and damping ration of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139. (in Chinese))
    [30]
    DARENDELI B M.Development of a new family of normalized modulus reduction and material damping curves[D]. Austin: The University of Texas at Austin, 2001.
    [31]
    JAFARIAN Y, JAVDANIAN H, HADDAD A.Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions[J]. Soils and Foundations, 2018, 58(1): 172-184.
  • Related Articles

    [1]Experimental study on rapid prediction of rock mechanical parameters based on vibration signals of raw rock with drilling[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240378
    [2]ZHONG Jiazheng, WANG Shuying, FENG Zhiyao, ZHU Hanbiao. Analytical model for undrained residual shear strength of foam-conditioned coarse-grained soils in large deformation based on effective stress principle[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2614-2623. DOI: 10.11779/CJGE20230180
    [3]WANG Yu-jie, SHE Lei, ZHAO Yu-fei, CAO Rui-lang. Experimental study on measurement of rock strength parameters based on digital drilling technology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1659-1668. DOI: 10.11779/CJGE202009010
    [4]YANG Ren-shu, CHEN Jun, FANG Shi-zheng, HOU Li-dong, CHEN Shuai-zhi. Inversion analysis of M-C criterion parameters of rock based on uniaxial shearing failure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1351-1356. DOI: 10.11779/CJGE201707023
    [5]SUN Li-qiang, LU Jiang-xin, LI Heng, YAN Shu-wang, JIA Xiao, HAN Sheng-zhang. Influence of water and salt contents on strength of artificially frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 27-31. DOI: 10.11779/CJGE2015S2006
    [6]CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002
    [7]LEI Guo-hui, CHEN Jing-jing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525.
    [8]BING Hui, HE Ping. Influence of freeze-thaw cycles on physical and mechanical properties of salty soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1958-1962.
    [9]LI Haipeng, LIN Chuannian, ZHANG Junbing, ZHU Yuanlin. Uniaxial compressive strength of saturated frozen clay at constant strain rate[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 105-109.
    [10]MIAO Tiande, MU Qingsong, LIU Zhongyu, MA Chongwu. Effective stress and shear strength of unsaturated soil with low water content[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 393-396.
  • Cited by

    Periodical cited type(3)

    1. 朱赛男,陈凯江,李伟华. 水下双层衬砌隧道对平面SV波散射问题的解. 西安建筑科技大学学报(自然科学版). 2023(02): 217-226 .
    2. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 .
    13. 朱辉,严松宏,孙纬宇,欧尔峰,林峻岑,汪精河. 地震波斜入射下浅埋偏压双隧道地震响应分析. 振动.测试与诊断. 2024(02): 259-265+407 .

    Other cited types(13)

Catalog

    Article views (412) PDF downloads (244) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return