Particle breakage model for coral sand under triaxial compression stress paths
-
摘要: 基于不同轴向应变下平行试样的三轴试验结果,分析了珊瑚砂在三轴排水与不排水条件下颗粒破碎随加载的演化过程,探讨了现有的颗粒破碎能量模型和基于应力的Hardin破碎模型的局限性。为了更好地分析颗粒破碎中间发展过程的特征,将引起颗粒破碎的机制分解为压缩和剪切两部分,并分别建立了与之相对应的破碎模型。压缩机制是指在等应力比条件下有效球应力增大导致的压缩效应,它所引起的颗粒破碎与当前的应力状态有关。剪切机制是指剪应力比变化所导致的剪切效应,它所引起的颗粒破碎与已经累积的颗粒破碎量以及剪应变的大小有关。最后,通过与珊瑚砂三轴试验结果的比对初步验证了压缩和剪切破碎模型的合理性。Abstract: Based on the triaxial experimental results of parallel specimens loaded under various axial strains, the intermediate particle breakage process of a coral sand is investigated, and the limitations of the energy-based breakage correlation and the popular stress-based Hardin breakage model are discussed. In order to reveal the characteristics of its intermediate accumulating process more conveniently, the particle breakage is decomposed into two parts based on the loading mechanisms: (1) compression-induced particle breakage associated with the increase of mean effective stress, and (2) shear-induced particle breakage related to the change of shear stress ratio. The amount of compression-induced particle breakage can be correlated to the current stress state. The accumulating rate of shear-induced particle breakage depends on both the shear strain and the accumulated amount of particle breakage during the past stress history. Two mathematical models are presented for the two particle breakage parts respectively, and the effectiveness of the two models is demonstrated by simulating the triaxial test results of the coral sand.
-
Keywords:
- particle breakage /
- coral sand /
- compression mechanism /
- shear mechanism
-
-
表 1 压缩和剪切破碎模型的相关参数
Table 1 Parameters of compression and shear breakage law
b1 c1 c2 A ¯¯Br 最终级配曲线 2.5×10-6 0.07 1.2 55.0 1.00 Hardin的破碎潜能 34.0 0.72 分形级配 -
[1] 邹德高, 田继荣, 刘京茂, 等. 堆石料三维形状量化及其对颗粒破碎的影响[J]. 岩土力学, 2018, 39(10): 27-32. doi: 10.16285/j.rsm.2017.0259 ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, et al. Three-dimensional shape of rockfill material and its influence on particle breakage[J]. Rock and Soil Mechanics, 2018, 39(10): 27-32. (in Chinese) doi: 10.16285/j.rsm.2017.0259
[2] 王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of coral sand under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
[3] 纪文栋, 张宇亭, 王洋, 等. 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. 岩土力学, 2018, 39(增刊1): 291-297. doi: 10.16285/j.rsm.2018.0580 JI Wen-dong, ZHANG Yu-ting, WANG Yang, et al. Comparative study on shear characteristics of coral calcareous sand and ordinary siliceous sand under cyclic single shear[J]. Rock and Soil Mechanics, 2018, 39(S1): 291-297. (in Chinese) doi: 10.16285/j.rsm.2018.0580
[4] WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007/s11440-007-0041-0
[5] 张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. doi: 10.3969/j.issn.1000-7598.2009.07.029 ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.029
[6] INDRARATNAB , SALIM W. Modelling of particle breakage of coarseaggregates incorporating strength and dilatancy[J]. Geotechnical Engineering, 2002, 155(4): 243-252.
[7] 王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
[8] BONO J P D, MCDOWELL G R. Discrete element modelling of one-dimensional compression of cemented sand[J]. Granular Matter, 2014, 16(1): 79-90. doi: 10.1007/s10035-013-0466-0
[9] CIANTIA M O, ARROYO M, O'SULLIVAN C, et al. Grading evolution and critical state in a discrete numerical model of Fontainebleau sand[J]. Géotechnique, 2019, 69(1): 1-15. doi: 10.1680/jgeot.17.P.023
[10] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
[11] KIKUMOTOM , WOODDM , RUSSELLA . Particle crushing and deformation behavior[J]. Soils and Foundations, 2010, 50(4): 547-563. doi: 10.3208/sandf.50.547
[12] INDRARATNAB , SUN Q D, NIMBALKAR S. Observed and predicted behaviour of rail ballast undermonotonic loading capturing particle breakage[J]. Canadian Geotechnical Journal, 2015, 52(4): 73-86.
[13] LADE P V, YAMAMURO J. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)
[14] CHEN T J, UENG T S. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2015, 50(1): 65-72.
[15] YU F. Characteristics of particle breakage of sand in triaxial shear[J]. Powder Technology, 2017, 320: 656-667. doi: 10.1016/j.powtec.2017.08.001
[16] LIU H, ZOU D. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage[J]. Journal of Engineering Mechanics, 2013, 139(5): 606-620. doi: 10.1061/(ASCE)EM.1943-7889.0000513
[17] HYODO M, WU Y, ARAMAKI N, et al. Undrained monotonic and cyclic shear response and particle crushing of[J]. Canadian Geotechnical Journal, 2016, 54(2): 207-218.
[18] JIA Y, XU B, CHI S, et al. Particle breakage of rockfill material during triaxial tests under complex stress paths[J]. International Journal of Geomechanics, 2019, 19(12): 04019124. doi: 10.1061/(ASCE)GM.1943-5622.0001517
[19] YU F. Particle breakage in triaxial shear of a coral sand[J]. Soilsand Foundations, 2018, 58(4): 866-880. doi: 10.1016/j.sandf.2018.04.001
[20] NANDA S, SIVAKUMAR V, DONOHUE S, et al. Small strain behavior and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading[J]. Canadian Geotechnical Journal, 2017, 55(7): 979-987.
[21] 叶沁果. 珊瑚礁钙质土力学行为与颗粒破碎的试验研究[D]. 重庆: 重庆大学, 2018. YE Qin-guo. Experimental Study on Mechanical Behavior and Particle Breakage of Calcareous Soil in Coral Reef[D]. Chongqing: Chongqing University, 2018. (in Chinese)
[22] WANG Z L, DAFALIAS Y F, SHEN C K.Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, 1990, 116(5): 983-1001. doi: 10.1061/(ASCE)0733-9399(1990)116:5(983)
[23] LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-86. doi: 10.1680/geot.2002.52.3.173
[24] WANG G, WANG Z, YE Q, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 04020012. doi: 10.1061/(ASCE)GM.1943-5622.0001601
[25] EINAV I. Breakage mechanics-Part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297. doi: 10.1016/j.jmps.2006.11.003
[26] COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
[27] WEI H, ZHAO T, HE J, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
[28] 蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
-
期刊类型引用(19)
1. 杨晓亚,于坤霞,李占斌,李鹏,刘永刚,莫淑红,杨建宏. 秦岭山区-黄土高原地区生态基流区域差异及其阈值研究. 干旱区地理. 2025(03): 380-390 . 百度学术
2. 唐逸凡,焦艳梅,刘新原,齐大洪,宋林辉. 地下水位升降过程中的黏土地基孔压变化试验研究. 南京工业大学学报(自然科学版). 2024(01): 103-111 . 百度学术
3. 李杰,程龙飞,孙大典,任怡桦,李雙衡. 酸性循环侵蚀下灰岩-土体渗透特性研究. 人民长江. 2024(07): 212-220 . 百度学术
4. 郭海,张安银. 基于PCA的长江漫滩软弱黏性土渗透特性研究. 江苏建筑. 2024(04): 102-105 . 百度学术
5. 李永威,徐林荣,傅金阳,商拥辉. 列车荷载作用下铁路路基填料渗透破坏机制. 岩土力学. 2024(S1): 299-308 . 百度学术
6. 李万双,蔡俊兵,柳雪钊. 软土渗透特性实验研究. 房地产世界. 2023(05): 39-43 . 百度学术
7. 邱潇,蒲勇,张亮,李明强. 大渡河中游流域深厚砾石层沉积特征与渗透特性. 人民长江. 2023(05): 156-162 . 百度学术
8. 张亮亮,邓刚,陈锐,张茵琪,罗之源. 不连续级配无黏性土渗蚀演变特征研究. 岩土工程学报. 2023(07): 1412-1420 . 本站查看
9. 康永闯,朱兴华,刘邦晓,孔静雯,王梦奎. 级配特征和水力梯度对堰塞坝材料渗透特性的影响研究. 西北水电. 2023(04): 30-37 . 百度学术
10. 郑刚,王佳琳,佟婧博,张天奇. 天津承压含水层粉土渗透特性试验研究. 天津大学学报(自然科学与工程技术版). 2022(01): 77-84 . 百度学术
11. 宋林辉,王兴亚,吴昊宇,周克发,梅国雄. 黏土在不同应力条件下的渗透过程分析. 岩土工程学报. 2022(04): 755-761 . 本站查看
12. 刘斯宏,鲁洋,张勇敢,张呈斌,程德虎. 袋装膨胀土组合体渗透特性大型模型试验. 河海大学学报(自然科学版). 2022(06): 101-107 . 百度学术
13. 张乐,党发宁,高俊,丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究. 岩土力学. 2021(04): 1078-1087 . 百度学术
14. 王力,王世梅,王琳,李高. 水库型滑坡流固耦合研究现状及展望. 水电能源科学. 2020(01): 143-146+31 . 百度学术
15. 梅世昂,钟启明,陈澄昊,阎志坤. 级配特征和水力梯度对砂砾料渗透性影响研究. 人民黄河. 2020(06): 130-134+139 . 百度学术
16. 刘翠. 研究室内渗透试验结果的影响因素及注意事项. 四川水泥. 2020(05): 310 . 百度学术
17. 侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 . 百度学术
18. 杨德欢,韦昌富,颜荣涛,汤沁,刘莉. 细粒迁移及组构变化对黏土渗透性影响的试验研究. 岩土工程学报. 2019(11): 2009-2017 . 本站查看
19. 黄薛,曾纯品,雷炳霄,丁庆忠. 济南富水孔隙黏性土地层渗透性试验研究. 地质学报. 2019(S1): 87-92 . 百度学术
其他类型引用(21)