Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不连续级配无黏性土渗蚀演变特征研究

张亮亮, 邓刚, 陈锐, 张茵琪, 罗之源

张亮亮, 邓刚, 陈锐, 张茵琪, 罗之源. 不连续级配无黏性土渗蚀演变特征研究[J]. 岩土工程学报, 2023, 45(7): 1412-1420. DOI: 10.11779/CJGE20220468
引用本文: 张亮亮, 邓刚, 陈锐, 张茵琪, 罗之源. 不连续级配无黏性土渗蚀演变特征研究[J]. 岩土工程学报, 2023, 45(7): 1412-1420. DOI: 10.11779/CJGE20220468
ZHANG Liangliang, DENG Gang, CHEN Rui, ZHANG Yinqi, LUO Zhiyuan. Experimental investigation on evolution process of suffusion in gap-graded cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1412-1420. DOI: 10.11779/CJGE20220468
Citation: ZHANG Liangliang, DENG Gang, CHEN Rui, ZHANG Yinqi, LUO Zhiyuan. Experimental investigation on evolution process of suffusion in gap-graded cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1412-1420. DOI: 10.11779/CJGE20220468

不连续级配无黏性土渗蚀演变特征研究  English Version

基金项目: 

国家自然科学基金项目 52278339

深圳市科技计划项目 KQTD20210811090112003

深圳市自然科学基金基础研究面上项目 JCYJ20190806144603586

中国水利水电科学研究院基本科研业务费项目 GE0145B032021

详细信息
    作者简介:

    张亮亮(1992—),男,河南周口人,博士研究生,主要从事岩土体渗透破坏方面的研究工作。E-mail:zlliang1992@163.com

    通讯作者:

    陈锐, E-mail:cechenrui@hit.edu.cn

  • 中图分类号: TU43

Experimental investigation on evolution process of suffusion in gap-graded cohesionless soil

  • 摘要: 渗蚀是指土体内部细颗粒在渗流作用下克服粒间作用力逐步脱离,在粗颗粒骨架孔隙中发生迁移,并可能引起土骨架应力重分布和变形的侵蚀过程。利用自制局部孔压可测的三轴渗蚀装置,研究了细颗粒含量和相对密度对不连续级配无黏性土渗蚀行为的影响,并根据渗流沿程局部水力梯度的时空演变揭示了土体渗蚀发展的演变特征。结果表明:不连续级配无黏性土启动和破坏水力梯度随细颗粒含量/相对密度的增大而增大;相对密度越大侵蚀程度越小,且等向应力下相对密度增大到一定值后,土体会由渗流不稳定状态转变为稳定状态;土体渗蚀启动的内部表现是局部水力梯度的突变及渗流沿程上的不均匀分布。土体渗蚀导致细颗粒流失,土体孔隙比增大,在等向应力条件下,会引发体积收缩现象。
    Abstract: The suffusion involves selective erosion and gradual migration of fine particles through the voids of soil skeleton formed by coarse particles under seepage flow. As a result, redistribution of soil skeleton stress and deformation of soil may be induced. In this study, a series of suffusion tests are carried out using the triaxial erosion apparatus with measurable local pore pressure. The effects of the initial fine particle content and initial relative density on the suffusion of a gap-graded cohesionless soil are investigated. According to the spatial-temporal evolution of local hydraulic gradients along seepage path, the evolution process of the suffusion is revealed. Test results show that both the initiation and the failure hydraulic gradients of the gap-graded cohesionless soil increase with the increase of the fine particle content and relative density. The cumulative loss of fine particles decreases significantly with the increase of the relative density. When the relative density increases to a certain value under isotropic stress condition, the gap-graded cohesionless soil will change from an unstable state of seepage to a stable one. Additionally, the internal manifestation of suffusion initiation of soil is the mutation and uneven distribution of local hydraulic gradient along seepage path. The suffusion will cause the loss of fine particles, as well as the increase of the void ratio. Under the isotropic stress condition, the volume shrinkage is induced.
  • 图  1   三轴渗蚀试验装置

    Figure  1.   Triaxial test apparatus for suffusion

    图  2   试验用土颗粒级配曲线

    Figure  2.   Particle size distribution of test soils

    图  3   重复性试验土样的kg-ig演变

    Figure  3.   Evolution of global hydraulic conductivity with global hydraulic gradient in repeatability tests

    图  4   不同细颗粒含量下土样的lgv-lgig演变

    Figure  4.   Evolution of seepage velocity with global hydraulic gradient at various FCs

    图  5   不同相对密度下土样的lgv-lgig演变

    Figure  5.   Evolution of seepage velocity with global hydraulic gradient at various relative densities

    图  6   细颗粒含量对抗渗强度及侵蚀程度的影响

    Figure  6.   Effects of FC on initiation and failure hydraulic gradients as well as cumulative loss of fine particles

    图  7   相对密度对土样抗渗强度及侵蚀程度的影响

    Figure  7.   Effects of relative density on initiation and failure hydraulic gradients as well as cumulative loss of fine particles

    图  8   FC30-D8-C100土样局部水力梯度的时空演变特征

    Figure  8.   Spatial-temporal evolution characteristics of local hydraulic gradient of FC30-D8-C100 specimen

    图  9   FC30-D8-C100土样全局和局部变形演变

    Figure  9.   Evolution of global and local deformations of FC30-D8-C100 specimen

    表  1   试验材料基本物性参数

    Table  1   Physical properties of test soils

    基本物
    性参数
    细粒
    含量FC/%
    颗粒相对质量密度Gs 不均匀系数Cu 曲率系数Cc 最大孔隙比emax 最小孔隙比emin
    细粒组 100 2.65 1.45 0.96 1.306 0.706
    粗粒组 0 2.65 1.16 0.98 1.053 0.697
    FC20 20 2.65 19.20 15.41 0.764 0.428
    FC30 30 2.65 21.69 0.12 0.748 0.378
    FC40 40 2.65 22.83 0.10 0.729 0.336
    下载: 导出CSV

    表  2   试验工况

    Table  2   Test program

    试验系列 方案编号 FC /% 干密度ρd/
    (g·cm-3)
    相对密度Dr 初始孔隙比e 有效围压/kPa 固结后孔隙比e0 内部稳定性判定
    Kézdi K-L
    FC20-D8-C100 20 0.87 0.461 U U
    FC30-D8-C100 30 0.78 0.462 U U
    系列Ⅰ FC40-D8-C100 40 1.8 0.65 0.472 100 0.466 U U
    FC30-D8-C100-R1 30 0.75 0.462 U U
    FC30-D8-C100-R2 30 0.75 0.462 U U
    FC30-D6-C100 1.6 0.25 0.656 0.600 U U
    FC30-D7-C100 1.7 0.50 0.559 0.518 U U
    系列Ⅱ FC30-D8-C100 30 1.8 0.75 0.472 100 0.462 U U
    FC30-D9-C100 1.9 0.95 0.395 0.388 U U
    FC30-D9-C100-R1 1.9 0.95 0.395 0.388 U U
    注:方案编号中,FC为细颗粒含量;D为干密度;C(confining pressure)为等向应力即围压数值;R为重复性试验。内部稳定性判定中,U表示内部不稳定。Kézdi法中dc15/df85 > 4为内部不稳定,其中dc15为土体粗粒组15%质量百分数所对应粒径;df85为土体细粒组85%质量百分数所对应粒径。K-L法(Kenney和Lau方法)中(H/F)min<1为内部不稳定,其中H为土体任意粒径d对应质量百分数;F为土体任意粒径d~4d之间颗粒对应质量百分数。
    下载: 导出CSV

    表  3   可重复性试验结果

    Table  3   Results of repeatability tests

    试验工况 iin Cv/% if Cv/% k0/(cm·s-1) Cv/% kin/(cm·s-1) Cv/% kav/(cm·s-1) Cv/%
    FC30-D8-C100 1.15 0.8 2.27 4.2 0.0381 4.5 0.0365 0.5 0.0378 1.8
    FC30-D8-C100-R1 1.17 2.46 0.0392 0.0366 0.0375
    FC30-D8-C100-R2 1.15 2.24 0.0423 0.0369 0.0389
    下载: 导出CSV
  • [1]

    FOSTER M, FELL R, SPANNAGLE M. The statistics of embankment dam failures and accidents[J]. Canadian Geotechnical Journal, 2000, 37(5): 1000-1024. doi: 10.1139/t00-030

    [2]

    Iternational Commiss on Large Dams. Internal Erosion of Existing Dams, Levees and Dikes, and Their Toundations (ICOLD Bulletin 164)[R]. Paris: Iternational Commiss on Large Dams, 2017.

    [3]

    KÉZDI, A. Soil Physics[M]. Amsterdam: Elsevier Scientific Publishing Company, 1979.

    [4] 李伟一, 钱建固, 尹振宇, 等. 间断级配砂土渗流侵蚀现象的CFD-DEM模拟[J]. 岩土力学, 2021, 42(11): 3191-3201. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111028.htm

    LI Weiyi, QIAN Jiangu, YIN Zhenyu, et al. Simulation of seepage erosion in gap graded sand soil using CFD-DEM[J]. Rock and Soil Mechanics, 2021, 42(11): 3191-3201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111028.htm

    [5]

    OUEIDAT M, BENAMAR A, BENNABI A. Effect of fine particles and soil heterogeneity on the initiation of suffusion[J]. Geotechnical and Geological Engineering, 2021, 39(3): 2359-2371. doi: 10.1007/s10706-020-01632-8

    [6] 宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635-1641. doi: 10.11779/CJGE201809009

    SONG Linhui, HUANG Qiang, YAN Di, et al. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635-1641. (in Chinese) doi: 10.11779/CJGE201809009

    [7]

    PACHIDEH V, MIR MOHAMMAD HOSSEINI S M. A new physical model for studying flow direction and other influencing parameters on the internal erosion of soils[J]. Geotechnical Testing Journal, 2019, 42(6): 20170301. doi: 10.1520/GTJ20170301

    [8]

    CHANG D S, ZHANG L M. Critical hydraulic gradients of internal erosion under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1454-1467. doi: 10.1061/(ASCE)GT.1943-5606.0000871

    [9] 陈勇, 闵泽鑫, 夏振尧, 等. 渗流作用下粉土质砂潜蚀演化特征与预测模型[J/OL]. 土木与环境工程学报(中英文), 2023: 1-9.

    CHEN Yong, MING Zexin, XIA Zhenyao, et al. Evolution characteristics and prediction model on suffusion of silty-sand subjected to seepage[J/OL]. Journal of Civil and Environmental Engineering, 2023: 1-9. https://kns.cnki.net/kcms/detail/50.1218.TU.20210816.1145.003.html. (in Chinese)

    [10] 刘杰, 谢定松. 砾石土渗透稳定特性试验研究[J]. 岩土力学, 2012, 33(9): 2632-2638. doi: 10.16285/j.rsm.2012.09.009

    LIU Jie, XIE Dingsong. Research on seepage stability experiment of gravelly soil[J]. Rock and Soil Mechanics, 2012, 33(9): 2632-2638. (in Chinese) doi: 10.16285/j.rsm.2012.09.009

    [11] 陈生水, 凌华, 米占宽, 等. 大石峡砂砾石坝料渗透特性及其影响因素研究[J]. 岩土工程学报, 2019, 41(1): 26-31. doi: 10.11779/CJGE201901002

    CHEN Shengshui, LING Hua, MI Zhankuan, et al. Experimental study on permeability and its influencing factors for sandy gravel of Dashixia Dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 26-31. (in Chinese) doi: 10.11779/CJGE201901002

    [12] 陈群, 谷宏海, 何昌荣. 砾石土防渗料-反滤料联合抗渗试验[J]. 四川大学学报(工程科学版), 2012, 44(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201201004.htm

    CHEN Qun, GU Honghai, HE Changrong. Combination seepage failure test of gravelly soil and the filter[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(1): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201201004.htm

    [13]

    LIANG Y, YEH T C J, ZHA Y Y, et al. Onset of suffusion in gap-graded soils under upward seepage[J]. Soils and Foundations, 2017, 57(5): 849-860. doi: 10.1016/j.sandf.2017.08.017

    [14]

    LIU K W, QIU R Z, SU Q, et al. Suffusion response of well graded gravels in roadbed of non-ballasted high speed railway[J]. Construction and Building Materials, 2021, 284: 122848. doi: 10.1016/j.conbuildmat.2021.122848

    [15] 袁涛, 蒋中明, 刘德谦, 等. 粗粒土渗透损伤特性试验研究[J]. 岩土力学, 2018, 39(4): 1311-1316, 1336. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804022.htm

    YUAN Tao, JIANG Zhongming, LIU Deqian, et al. Experiment on the seepage damage coarse grain soil[J]. Rock and Soil Mechanics, 2018, 39(4): 1311-1316, 1336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804022.htm

    [16]

    KE L, TAKAHASHI A. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow[J]. Soils and Foundations, 2012, 52(4): 698-711. doi: 10.1016/j.sandf.2012.07.010

    [17]

    WANG J J, QIU Z F. Anisotropic hydraulic conductivity and critical hydraulic gradient of a crushed sandstone–mudstone particle mixture[J]. Marine Georesources & Geotechnology, 2017, 35(1): 89-97.

    [18]

    MOFFAT R, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071

    [19] 谷敬云, 罗玉龙, 张兴杰, 等. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用[J]. 岩石力学与工程学报, 2021, 40(6): 1287-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm

    GU Jingyun, LUO Yulong, ZHANG Xingjie, et al. A suffusion visualization apparatus based on planar laser induced fluorescence and the preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1287-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106019.htm

    [20] 梁越, 代磊, 魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究[J]. 岩土工程学报, 2022, 44(6): 1133-1140. doi: 10.11779/CJGE202206018

    LIANG Yue, DAI Lei, WEI Qi. Experimental study on seepage erosion based on transparent soil and particle tracing technology[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1133-1140. (in Chinese) doi: 10.11779/CJGE202206018

    [21] 常东升, 张利民. 土体渗透稳定性判定准则[J]. 岩土力学, 2011, 32(增刊1): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1045.htm

    CHANG Dongsheng, ZHANG Limin. Internal stability criteria for soils[J]. Rock and Soil Mechanics, 2011, 32(S1): 253-259. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1045.htm

    [22] 朱秦, 苏立君, 刘振宇, 等. 颗粒迁移作用下宽级配土渗透性研究[J]. 岩土力学, 2021, 42(1): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101014.htm

    ZHU Qin, SU Lijun, LIU Zhenyu, et al. Study of seepage in wide-grading soils with particles migration[J]. Rock and Soil Mechanics, 2021, 42(1): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101014.htm

    [23] 周健, 姚志雄, 张刚. 基于散体介质理论的砂土管涌机制研究[J]. 岩石力学与工程学报, 2008, 27(4): 749-756. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804016.htm

    ZHOU Jian, YAO Zhixiong, ZHANG Gang. Research on piping mechanism in sandy soils based on discrete element theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 749-756. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804016.htm

    [24]

    KE L, TAKAHASHI A. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil[J]. Soils and Foundations, 2014, 54(4): 713-730.

    [25] 陈锐, 谭润锵, 赵燕茹, 等. 一种用于乳胶膜开孔后的密封装置及其使用方法: CN111042097A[P]. 2020-04-21.

    CHEN Rui, TAN Runqiang, ZHAO Yanru, et al. Sealing Device Used after Hole Forming of Latex Film and Application Method of Sealing Device: CN111042097A[P]. 2020-04-21. (in Chinese)

    [26]

    KENNEY T C, LAU D. Internal stability of granular filters[J]. Canadian Geotechnical Journal, 1985, 22(2): 215-225.

    [27]

    CHANG D S, ZHANG L M, et al. A stress-controlled erosion apparatus for studying internal erosion in soils[J]. Geotechnical Testing Journal, 2011, 34(6): 103889.

    [28]

    CHEN C, ZHANG L M, ZHU H. A photographic method for measuring soil deformations during internal erosion under triaxial stress conditions[J]. Geotechnical Testing Journal, 2018, 41(1): 20170031.

    [29]

    RICHARDS K S, REDDY K R, et al. True triaxial piping test apparatus for evaluation of piping potential in earth structures[J]. Geotechnical Testing Journal, 2010, 33(1): 102246.

    [30]

    LIANG Y, ZENG C, WANG J J, et al. Constant gradient erosion apparatus for appraisal of piping behavior in upward seepage flow[J]. Geotechnical Testing Journal, 2017, 40(4): 630-642.

    [31]

    DENG G, ZHANG L L, CHEN R, et al. Experimental investigation on suffusion characteristics of cohesionless soils along horizontal seepage flow under controlled vertical stress[J]. Frontiers in Earth Science, 2020, 8: 195.

图(9)  /  表(3)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  69
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回