• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhao-nan, WANG Gang, YE Qin-guo, YIN Hao. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017
Citation: WANG Zhao-nan, WANG Gang, YE Qin-guo, YIN Hao. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017

Particle breakage model for coral sand under triaxial compression stress paths

More Information
  • Received Date: February 02, 2020
  • Available Online: December 04, 2022
  • Based on the triaxial experimental results of parallel specimens loaded under various axial strains, the intermediate particle breakage process of a coral sand is investigated, and the limitations of the energy-based breakage correlation and the popular stress-based Hardin breakage model are discussed. In order to reveal the characteristics of its intermediate accumulating process more conveniently, the particle breakage is decomposed into two parts based on the loading mechanisms: (1) compression-induced particle breakage associated with the increase of mean effective stress, and (2) shear-induced particle breakage related to the change of shear stress ratio. The amount of compression-induced particle breakage can be correlated to the current stress state. The accumulating rate of shear-induced particle breakage depends on both the shear strain and the accumulated amount of particle breakage during the past stress history. Two mathematical models are presented for the two particle breakage parts respectively, and the effectiveness of the two models is demonstrated by simulating the triaxial test results of the coral sand.
  • [1]
    邹德高, 田继荣, 刘京茂, 等. 堆石料三维形状量化及其对颗粒破碎的影响[J]. 岩土力学, 2018, 39(10): 27-32. doi: 10.16285/j.rsm.2017.0259

    ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, et al. Three-dimensional shape of rockfill material and its influence on particle breakage[J]. Rock and Soil Mechanics, 2018, 39(10): 27-32. (in Chinese) doi: 10.16285/j.rsm.2017.0259
    [2]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of coral sand under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
    [3]
    纪文栋, 张宇亭, 王洋, 等. 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. 岩土力学, 2018, 39(增刊1): 291-297. doi: 10.16285/j.rsm.2018.0580

    JI Wen-dong, ZHANG Yu-ting, WANG Yang, et al. Comparative study on shear characteristics of coral calcareous sand and ordinary siliceous sand under cyclic single shear[J]. Rock and Soil Mechanics, 2018, 39(S1): 291-297. (in Chinese) doi: 10.16285/j.rsm.2018.0580
    [4]
    WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007/s11440-007-0041-0
    [5]
    张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. doi: 10.3969/j.issn.1000-7598.2009.07.029

    ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.029
    [6]
    INDRARATNAB , SALIM W. Modelling of particle breakage of coarseaggregates incorporating strength and dilatancy[J]. Geotechnical Engineering, 2002, 155(4): 243-252.
    [7]
    王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

    WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
    [8]
    BONO J P D, MCDOWELL G R. Discrete element modelling of one-dimensional compression of cemented sand[J]. Granular Matter, 2014, 16(1): 79-90. doi: 10.1007/s10035-013-0466-0
    [9]
    CIANTIA M O, ARROYO M, O'SULLIVAN C, et al. Grading evolution and critical state in a discrete numerical model of Fontainebleau sand[J]. Géotechnique, 2019, 69(1): 1-15. doi: 10.1680/jgeot.17.P.023
    [10]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [11]
    KIKUMOTOM , WOODDM , RUSSELLA . Particle crushing and deformation behavior[J]. Soils and Foundations, 2010, 50(4): 547-563. doi: 10.3208/sandf.50.547
    [12]
    INDRARATNAB , SUN Q D, NIMBALKAR S. Observed and predicted behaviour of rail ballast undermonotonic loading capturing particle breakage[J]. Canadian Geotechnical Journal, 2015, 52(4): 73-86.
    [13]
    LADE P V, YAMAMURO J. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)
    [14]
    CHEN T J, UENG T S. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2015, 50(1): 65-72.
    [15]
    YU F. Characteristics of particle breakage of sand in triaxial shear[J]. Powder Technology, 2017, 320: 656-667. doi: 10.1016/j.powtec.2017.08.001
    [16]
    LIU H, ZOU D. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage[J]. Journal of Engineering Mechanics, 2013, 139(5): 606-620. doi: 10.1061/(ASCE)EM.1943-7889.0000513
    [17]
    HYODO M, WU Y, ARAMAKI N, et al. Undrained monotonic and cyclic shear response and particle crushing of[J]. Canadian Geotechnical Journal, 2016, 54(2): 207-218.
    [18]
    JIA Y, XU B, CHI S, et al. Particle breakage of rockfill material during triaxial tests under complex stress paths[J]. International Journal of Geomechanics, 2019, 19(12): 04019124. doi: 10.1061/(ASCE)GM.1943-5622.0001517
    [19]
    YU F. Particle breakage in triaxial shear of a coral sand[J]. Soilsand Foundations, 2018, 58(4): 866-880. doi: 10.1016/j.sandf.2018.04.001
    [20]
    NANDA S, SIVAKUMAR V, DONOHUE S, et al. Small strain behavior and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading[J]. Canadian Geotechnical Journal, 2017, 55(7): 979-987.
    [21]
    叶沁果. 珊瑚礁钙质土力学行为与颗粒破碎的试验研究[D]. 重庆: 重庆大学, 2018.

    YE Qin-guo. Experimental Study on Mechanical Behavior and Particle Breakage of Calcareous Soil in Coral Reef[D]. Chongqing: Chongqing University, 2018. (in Chinese)
    [22]
    WANG Z L, DAFALIAS Y F, SHEN C K.Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, 1990, 116(5): 983-1001. doi: 10.1061/(ASCE)0733-9399(1990)116:5(983)
    [23]
    LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-86. doi: 10.1680/geot.2002.52.3.173
    [24]
    WANG G, WANG Z, YE Q, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 04020012. doi: 10.1061/(ASCE)GM.1943-5622.0001601
    [25]
    EINAV I. Breakage mechanics-Part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297. doi: 10.1016/j.jmps.2006.11.003
    [26]
    COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
    [27]
    WEI H, ZHAO T, HE J, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
    [28]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
  • Cited by

    Periodical cited type(16)

    1. 张培森,许大强,颜伟,张晓乐,董宇航,赵铭. 应力-渗流耦合作用下不同卸荷路径对砂岩损伤特性及能量演化规律的影响研究. 岩土力学. 2024(02): 325-339 .
    2. 杜佳慧,李文璞,常悦,王泽,王涛. 卸荷砂岩渐进破坏及渗透特性的中间主应力效应研究. 煤矿安全. 2024(06): 19-29 .
    3. 季宁,李世倩,任罡,胡晓丽,陶红鑫,魏蔚,孙吕祎,屠骏,张梦梦,陶锴. 基于声发射乐谱化Frechet编码的变电站主变压器基底渗水损伤监测. 中国测试. 2023(02): 42-49 .
    4. 张培森,许大强,颜伟,胡昕,李霄,方家鑫,鞠照强,赵铭. 不同围压下峰后循环载荷对砂岩力学及渗流特性的影响研究. 煤炭科学技术. 2023(07): 94-105 .
    5. 张培森,许大强,颜伟,胡昕,张晓乐,董宇航,方家鑫. 不同初始损伤程度下循环加卸围压对岩石劣化及渗流特性的影响研究. 岩石力学与工程学报. 2023(09): 2109-2124 .
    6. 张培森,侯季群,赵成业,李腾辉. 不同应力状态下底板岩体渗流特性分析研究. 煤炭科学技术. 2022(01): 127-133 .
    7. 刘先珊,潘玉华,李满,康治勇,周虎,乔士豪. 循环加卸载过程中的水化页岩渗透特性. 煤炭学报. 2022(S1): 103-114 .
    8. 张培森,许大强,张睿,张晓乐,董宇航,慕卫丽. 不同围压及循环载荷下砂岩的渗流、力学特性试验研究. 岩石力学与工程学报. 2022(12): 2432-2450 .
    9. 刘先珊,周虎,张立君,李满,乔士豪,潘玉华,侯泽林,郝梓宇. 酸处理页岩的损伤效应与力学特性. 兰州大学学报(自然科学版). 2022(06): 831-841+846 .
    10. 刘先珊,李满,张立君,王科,李涛,曾南豆. 储层砂岩的物性差异对其渗透特性的影响. 应用基础与工程科学学报. 2022(06): 1505-1521 .
    11. 王文才,李雨萌. 煤矿地下水库人工坝体构筑材料适用性研究. 煤炭工程. 2020(03): 118-121 .
    12. 张培森,赵成业,侯季群,李腾辉. 高温与不同水压下深部砂岩渗透特性试验研究. 岩石力学与工程学报. 2020(06): 1117-1128 .
    13. 张培森,赵成业,侯季群,李腾辉,张雪. 温度-应力-渗流耦合条件下红砂岩渗流特性试验研究. 岩石力学与工程学报. 2020(10): 1957-1974 .
    14. 张培森,侯季群,赵成业,李腾辉. 不同围压不同损伤程度红砂岩渗流特性试验研究. 岩石力学与工程学报. 2020(12): 2405-2415 .
    15. 由爽,李飞,纪洪广,王洪涛,张乘菡. 高应力高水压下深部花岗岩力学响应联动机制. 煤炭学报. 2020(S1): 219-229 .
    16. 张俊文,宋治祥,范文兵,丁露江,姚子祥,霍英昊,宿文桐. 真三轴条件下砂岩渐进破坏力学行为试验研究. 煤炭学报. 2019(09): 2700-2709 .

    Other cited types(19)

Catalog

    Article views (362) PDF downloads (188) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return