• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑岩体构造损伤的强震大型滑坡启动成因

梁靖, 崔圣华, 裴向军, 黄润秋

梁靖, 崔圣华, 裴向军, 黄润秋. 考虑岩体构造损伤的强震大型滑坡启动成因[J]. 岩土工程学报, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007
引用本文: 梁靖, 崔圣华, 裴向军, 黄润秋. 考虑岩体构造损伤的强震大型滑坡启动成因[J]. 岩土工程学报, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007
LIANG Jing, CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu. Initiation mechanism of earthquake-induced large landslides considering structural damage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007
Citation: LIANG Jing, CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu. Initiation mechanism of earthquake-induced large landslides considering structural damage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007

考虑岩体构造损伤的强震大型滑坡启动成因  English Version

基金项目: 

国家重点研发计划项目 2017YFC1501002

国家自然科学基金项目 41907254

国家自然科学基金项目 41931296

四川省重点研发计划项目 2019YFG0460

详细信息
    作者简介:

    梁靖(1995—),男,硕士研究生,主要从事地质灾害防治与大型地震滑坡研究工作。E-mail: 370918252@qq.com

    通讯作者:

    裴向军, E-mail: peixj0119@tom.com

  • 中图分类号: TU43

Initiation mechanism of earthquake-induced large landslides considering structural damage

  • 摘要: 岩质滑坡通常受控于一系列与断层、褶皱和剪切带等相关的复杂岩体构造损伤面和软弱带,为滑坡启动提供了潜在破坏边界。为研究断裂与背斜构造背景下岩体损伤和不连续地质界面对滑坡三维边界形成和启动模式的影响,选择2008年汶川Ms8.0级特大地震在大水闸背斜两翼碳酸盐岩地层触发的4处大型滑坡为实例,开展了详细的工程地质调查、结构面测量、岩体强度测试及GSI岩体质量评价。结果表明:断裂活动与背斜演化导致的构造损伤差异显著,岩体质量从背斜轴部向两翼总体呈逐渐增加趋势,仅局部显著降低,并对滑坡的启动位置有着重要控制作用;同时,构造损伤背景下,特定岩体结构面与构造软弱带共同控制着滑坡启动机制,并将控制类型归纳为“控制侧滑型”、“控制底滑型”、“控制滑体型”及“控制基座型”;此外,地震滑坡与非地震滑坡的GSI对比表明,强震可能通过降低岩体质量条件促使滑坡快速启动,进而加快构造损伤区的地貌侵蚀过程。考虑复杂构造环境岩体损伤对评估强震潜在大型滑坡发生位置、启动机制和模式有重要作用。
    Abstract: Rock landslides are generally controlled by a series of discontinuities that relate to faults, folds and shear zones, which provide potential failure boundaries. To study the influences of rock mass damage and discontinuous geological interface on the formation and initiation of landslides under the background of fault and anticline, four large landslides triggered by the Wenchuan Ms8.0 earthquake in the carbonate strata of two wings of Dashuizha anticline are selected as examples to carry out detailed engineering geological investigation, structural plane survey, rock testing and rock quality assessment of GSI. The results show that there are clear differences in structural damage caused by fault and anticline. Gradually, the rock mass quality increases from the axis of anticline to the two wings, only decreases significantly locally, and controls the formation position of landslides. Meanwhile, under the background of structural damage, the structural plane and weak zone of specific rock jointly determine the initiation mechanism, and the types are summarized as "control side sliding type", "control bottom sliding type", "control sliding body type" and "control base type". In addition, the comparison of GSI of seismic and non-seismic landslides reveals that strong earthquake may promote the rapid start of landslides by reducing the rock mass quality, and then accelerate the process of geomorphic erosion in the structural damage area. Finally, it is believed that considering the rock mass damage in complex tectonic environment is very important to assess the location and initiation mechanism of potential large-scale landslides caused by strong earthquakes.
  • 图  1   研究区地质构造及测点分布

    Figure  1.   Geological structure and location of measuring points

    图  2   研究区滑坡特征

    Figure  2.   Characteristics of landslides in research area

    图  3   错动带和破碎带

    Figure  3.   Sliding surface and crushing zone

    图  4   节理赤平投影分析

    Figure  4.   Stereographic projection analysis of joints

    图  5   滑坡不同部位GSI统计

    Figure  5.   GSI estimates of four landslides

    图  6   大水闸背斜演化过程示意(据崔圣华等[12]改)

    Figure  6.   Development of Dashuizha anticline

    图  7   背斜核部不同距离GSI变化情况

    Figure  7.   Change of GSI at different distances from anticline

    图  8   不同滑坡破坏区域的GSI分布范围

    Figure  8.   Distribution of GSI field estimates for Daguangbao site

    图  9   GSI评估表描述的靠近背斜岩体质量变化的影响因素

    Figure  9.   Factors for change of rock mass quality near anticline described in GSI evaluation chart

    图  10   不连续地质界面组合下滑坡启动地质模型

    Figure  10.   Geological models for landslide initiation under discontinuous geological interface combination

    图  11   不同类型滑坡GSI对比

    Figure  11.   GSI comparison of different landslides

    表  1   滑坡基本信息

    Table  1   Basic information of landslides

    滑坡名称地理位置Ds/kmS/km²V/(104 m³)H/mL/mf
    经度纬度
    大光包滑坡104°6'17.90"31°38'18.43"4.87.27115900128846000.28
    红石沟滑坡104°7'27.30"31°37'15.76"2.20.35150092027000.34
    老鹰岩滑坡104°8'24.34"31°37'18.34"1.60.69150082014500.57
    大竹坪滑坡104°8'41.62"31°37'11.34"1.30.2819604808900.54
    注:Ds为滑坡与发震断裂垂直距离,S为滑坡面积,V为滑坡体积,H为滑坡最大高差,L为滑坡最长距离,f为等效摩擦系数(f=H/L)。
    下载: 导出CSV

    表  2   滑坡结构面特征

    Table  2   Structural plane characteristics of landslides

    滑坡名称结构面倾角/(°)倾向/(°)粗糙度延续性间距/mJRC
    主要次要
    大光包滑坡J1(N=51)35359平面粗糙面0.01~0.15~9
    J2(N=22)70152波状粗糙面低—中等0.01~0.058~12
    J3(N=25)84100波状平滑面低—中等0.01~0.16~10
    红石沟滑坡J1(N=86)4688~358波状平滑面中等>0.23~5
    J2(N=72)6591波状粗糙面0.03~0.45~10
    J3(N=35)6336波状粗糙面0.05~0.86~9
    J4(N=89)52143波状粗糙面低—中等0.01~0.65~8
    老鹰岩滑坡J1(N=62)55112波状平滑面中等—高>14~7
    J2(N=71)61347波状粗糙面低—中等0.01~0.57~11
    J3(N=82)72189波状粗糙面低—中等0.01~0.38~12
    J4(N=71)41263波状平滑面很低0.03~0.26~7
    大竹坪滑坡J1(N=45)56116波状粗糙面低—中等0.05~0.88~9
    J2(N=32)35248波状平滑面0.05~1.37~10
    J3(N=45)58357波状平滑面低—中等0.01~0.85~7
    J4(N=34)7031波状粗糙面低—中等0.08~17~10
    下载: 导出CSV
  • [1] 张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm

    ZHANG Yong-shuang, SU Sheng-rui, WU Shu-ren, et al. Research on relationship between fault movement and large-scale landslide in intensive earthquake region[J]. Chinese Journal of Rock Mechanism and Engineering, 2011, 30(S2): 3503-3513. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm

    [2] 李晓, 李守定, 陈剑, 等. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 2008, 27(9): 1792-1806. doi: 10.3321/j.issn:1000-6915.2008.09.006

    LI Xiao, LI Shou-ding, CHEN Jian, et al. Coupling effect mechanism of endogenic and exogenic geological processes of geological hazards evolution[J]. Chinese Journal of Rock Mechanism and Engineering, 2008, 27(9): 1792-1806. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.006

    [3]

    JABOYEDOFF M, RéJEAN C, LOCAT P. Structural analysis of Turtle Mountain (Alberta) using digital elevation model: Toward a progressive failure[J]. Geomorphology, 2009, 103(1): 5-16. doi: 10.1016/j.geomorph.2008.04.012

    [4]

    PEDRAZZNI A, JABOYEDOFF M, FROESE C R, et al. Structural analysis of Turtle Mountain: origin and influence of fractures in the development of rock slope failures[J]. Geological Society London Special Publications, 2011, 351(1): 163-183. doi: 10.1144/SP351.9

    [5]

    DI LUZIO E, SAROLI M, ESPOSITO C, et al. Influence of structural framework on mountain slope deformation in the Maiella anticline(Central Apennines,Italy)[J]. Geo- morphology, 2004, 60(3/4): 417-432.

    [6]

    FASANI G B, ESPOSITO C, MAFFEI A, et al. Geological controls on initial failure mechanisms of rock avalanches in central Apennines[J]. Landslides: Evaluation and Stabilization, 2004: 501-507.

    [7]

    SANDØY G, THIERRY O, BJØRN N. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway[J]. Geomorphology, 2017(289): 78-95.

    [8]

    KORUP , OLIVER . Geomorphic implications of fault zone weakening: slope instability along the alpine fault, south westland to fiordland[J]. New Zealand Journal of Geology and Geophysics, 2004, 47(2): 257-267. doi: 10.1080/00288306.2004.9515052

    [9] 崔圣华, 裴向军, 王功辉, 等. 基于环剪试验的汶川地震大型滑坡启动机理探索[J]. 岩土工程学报, 2017, 39(12): 2268-2277. doi: 10.11779/CJGE201712016

    CUI Sheng-hua, PEI Xiang-jun, WANG gong-hui. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Journal of Engineering Geology, 2017, 39(12): 2268-2277. (in Chinese) doi: 10.11779/CJGE201712016

    [10]

    BACHMANN D, BOUISSOU S, CHEMENDA A. Influence of weathering and preexisting large scale fractures on gravitational slope failure: insights from 3-Dphysical modelling[J]. Natural Hazards and Earth System Sciences, 2004(4): 711-717.

    [11] 崔圣华. 强震过程软弱层带地震动响应及大型滑坡启动机理研究[D]. 成都: 成都理工大学, 2017.

    CUI Sheng-hua. Seismic Responses of Wake Inter-Layer and Initiation Mechanisms of Large Landslide During Strong Earthquake[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese)

    [12] 崔圣华, 裴向军, 黄润秋, 等. 汶川地震黄洞子沟右岸大型滑坡地质构造特征及成因[J]. 工程地质学报, 2019, 27(2): 437-450. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902025.htm

    CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu, et al. Geological features and causes of the Wenchuan earthquake triggered large landslide on right bank of Huangdongzi gully[J]. Journal of Engineering Geology, 2019, 27(2): 437-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902025.htm

    [13] 曹琰波, 戴福初, 许冲, 等. 唐家山滑坡变形运动机制的离散元模拟[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2878-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm

    CAO Yi-bo, DAI Fu-chu, XU Chong, et al. Discrete element simulation of deformation and movement mechanism for Tangjiashan landslide[J]. Chinese Journal of Rock Mechanism and Engineering, 2011, 30(S1): 2878-2887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm

    [14] 王涛, 马寅生, 龙长兴, 等. 四川汶川地震断裂活动和次生地质灾害浅析[J]. 地质通报, 2008(11): 1913-1922. doi: 10.3969/j.issn.1671-2552.2008.11.022

    WANG Tao, MA Yin-sheng, LONG Chang-xing, et al. Fault activity of the Wenchuan earthquake in Sichuan, China and seismic secondary geohazards[J]. Geological Bulletin, 2008(11): 1913-1922. (in Chinese) doi: 10.3969/j.issn.1671-2552.2008.11.022

    [15] 李奋生, 李勇, 颜照坤, 等. 构造、地貌和气候对汶川地震同震及震后地质灾害的控制作用—以龙门山北段通口河流域为例[J]. 自然杂志, 2012, 34(4): 216-218, 249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204006.htm

    LI Fu-sheng, LI Yong, YAN Zhao-kun, et al. Controlaction of tectonic, landforms and climate on the geological hazards in wenchuan earthquake coseismic and after earthquake: take tongkou river watershed, the northern longmen mountain for example[J]. Nature Journal, 2012, 34(4): 216-218, 249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204006.htm

    [16] 黄润秋, 李为乐. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Run-qiu, LI Wei-le. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th[J]. Chinese Journal of Rock Mechanism and Engineering, 2008, 27(12): 2585-2592. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.12.028

    [17] 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 2009, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021

    HUANG Run-qiu. Mechanism and geomechanical models of landslide hazards triggered by Wenchuan M s8.0 earthquake[J]. Chinese Journal of Rock Mechanism and Engineering, 2009, 28(6): 1239-1249. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.021

    [18] 许冲, 戴福初, 徐锡伟. 汶川地震滑坡灾害研究综述[J]. 地质论评, 2010, 56(6): 860-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm

    XU Chong, DAI Fu-chu, XU Xi-wei. Wenchuan Earthquake-induced landslides:an overview[J]. Geological Review, 2010, 56(6): 860-874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm

    [19] 唐辉明, 李德威, 胡新丽. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报, 2009, 17(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902000.htm

    TANG Hui-ming, LI De-wei, HU Xin-li. Faulting characteristics of Wenchuan earthquake and evalution theory of regional crustal stability[J]. Journal of Engineering Geology, 2009, 17(2): 145-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902000.htm

    [20] 李勇, 黄润秋, 周荣军, 等. 龙门山地震带的地质背景与汶川地震的地表破裂[J]. 工程地质学报, 2009, 17(1): 3-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200901003.htm

    LI Yong, HUANG Run-qiu, ZHOU Rong-jun, et al. Geological background in Longmenshan seismic belt and surface rupture of Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1): 3-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200901003.htm

    [21]

    GODARD W, PIK R, LAVE J, et al. Late Cenozoic evolution of the central Longmenshan, eastern Tibet: insight from(U-Th)/He thermochronometry[J]. Tectonics, 2009, 28(5): 1-17.

    [22]

    WANG E Q, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9): 640-645.

    [23] 四川省地质矿产局化探队. 清平幅H-48-17-A 1:5 万区域地质图说明书[R]. 成都: 四川省地质矿产局化探队, 1995: 63-69.

    Geochemical Ex-ploration Brigade of Geology &Mineral Resources Exploration & Development Bureau of Sichuan. Geological map Specificaton of the People's Republic of China (Scale:1:50000) Qingping Seria[R]. Chengdu: Geochemical Exploration Brigade of Geology & Mineral Resources Exploration & Development Bureau of Sichuan, 1995: 63-69. (in Chinese)

    [24]

    BRIDEAU M, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30-49.

    [25]

    MARINOS P, HOEK E. GSI: a geologically friendly tool for rock mass strength estimation[C]//GEOENG, Melbourne, 2000, Australia.

    [26] 裴向军, 黄润秋, 崔圣华, 等. 大光包滑坡岩体碎裂特征及其工程地质意义[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3106-3115. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1064.htm

    PEI Xiang-jun, HUANG Run-qiu, CUI Sheng-hua, et al. The rock mass cataclastic characteristic of Daguangbao landslide and its engineering geological significance[J]. Chinese Journal of Mechanics and Engineering Geology, 2015, 34(S1): 3106-3115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1064.htm

    [27]

    KIM B, CAI H, KAISER M. et al. Estimation of block sizes for rock masses with non-persistent joints[J]. Rock Mechanics and Rock Engineering, 2007, 40: 169-192.

    [28]

    MARINOS V, MARINOS P, HOEK E. The geological strength index: applications and limitations[J]. Bulletin of Engineering Geology and the Environ-ment, 2005, 64: 55-65.

    [29]

    MARTINO S, MINUTOLO A, PACIELLO A. et al. Evidence of amplification effects in fault zone related to rock mass jointing[J]. Natural Hazards, 2006, 39: 419-449.

图(11)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-17
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回