• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Jing, CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu. Initiation mechanism of earthquake-induced large landslides considering structural damage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007
Citation: LIANG Jing, CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu. Initiation mechanism of earthquake-induced large landslides considering structural damage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007

Initiation mechanism of earthquake-induced large landslides considering structural damage

More Information
  • Received Date: June 17, 2020
  • Available Online: December 02, 2022
  • Rock landslides are generally controlled by a series of discontinuities that relate to faults, folds and shear zones, which provide potential failure boundaries. To study the influences of rock mass damage and discontinuous geological interface on the formation and initiation of landslides under the background of fault and anticline, four large landslides triggered by the Wenchuan Ms8.0 earthquake in the carbonate strata of two wings of Dashuizha anticline are selected as examples to carry out detailed engineering geological investigation, structural plane survey, rock testing and rock quality assessment of GSI. The results show that there are clear differences in structural damage caused by fault and anticline. Gradually, the rock mass quality increases from the axis of anticline to the two wings, only decreases significantly locally, and controls the formation position of landslides. Meanwhile, under the background of structural damage, the structural plane and weak zone of specific rock jointly determine the initiation mechanism, and the types are summarized as "control side sliding type", "control bottom sliding type", "control sliding body type" and "control base type". In addition, the comparison of GSI of seismic and non-seismic landslides reveals that strong earthquake may promote the rapid start of landslides by reducing the rock mass quality, and then accelerate the process of geomorphic erosion in the structural damage area. Finally, it is believed that considering the rock mass damage in complex tectonic environment is very important to assess the location and initiation mechanism of potential large-scale landslides caused by strong earthquakes.
  • [1]
    张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm

    ZHANG Yong-shuang, SU Sheng-rui, WU Shu-ren, et al. Research on relationship between fault movement and large-scale landslide in intensive earthquake region[J]. Chinese Journal of Rock Mechanism and Engineering, 2011, 30(S2): 3503-3513. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm
    [2]
    李晓, 李守定, 陈剑, 等. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 2008, 27(9): 1792-1806. doi: 10.3321/j.issn:1000-6915.2008.09.006

    LI Xiao, LI Shou-ding, CHEN Jian, et al. Coupling effect mechanism of endogenic and exogenic geological processes of geological hazards evolution[J]. Chinese Journal of Rock Mechanism and Engineering, 2008, 27(9): 1792-1806. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.006
    [3]
    JABOYEDOFF M, RéJEAN C, LOCAT P. Structural analysis of Turtle Mountain (Alberta) using digital elevation model: Toward a progressive failure[J]. Geomorphology, 2009, 103(1): 5-16. doi: 10.1016/j.geomorph.2008.04.012
    [4]
    PEDRAZZNI A, JABOYEDOFF M, FROESE C R, et al. Structural analysis of Turtle Mountain: origin and influence of fractures in the development of rock slope failures[J]. Geological Society London Special Publications, 2011, 351(1): 163-183. doi: 10.1144/SP351.9
    [5]
    DI LUZIO E, SAROLI M, ESPOSITO C, et al. Influence of structural framework on mountain slope deformation in the Maiella anticline(Central Apennines,Italy)[J]. Geo- morphology, 2004, 60(3/4): 417-432.
    [6]
    FASANI G B, ESPOSITO C, MAFFEI A, et al. Geological controls on initial failure mechanisms of rock avalanches in central Apennines[J]. Landslides: Evaluation and Stabilization, 2004: 501-507.
    [7]
    SANDØY G, THIERRY O, BJØRN N. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway[J]. Geomorphology, 2017(289): 78-95.
    [8]
    KORUP , OLIVER . Geomorphic implications of fault zone weakening: slope instability along the alpine fault, south westland to fiordland[J]. New Zealand Journal of Geology and Geophysics, 2004, 47(2): 257-267. doi: 10.1080/00288306.2004.9515052
    [9]
    崔圣华, 裴向军, 王功辉, 等. 基于环剪试验的汶川地震大型滑坡启动机理探索[J]. 岩土工程学报, 2017, 39(12): 2268-2277. doi: 10.11779/CJGE201712016

    CUI Sheng-hua, PEI Xiang-jun, WANG gong-hui. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Journal of Engineering Geology, 2017, 39(12): 2268-2277. (in Chinese) doi: 10.11779/CJGE201712016
    [10]
    BACHMANN D, BOUISSOU S, CHEMENDA A. Influence of weathering and preexisting large scale fractures on gravitational slope failure: insights from 3-Dphysical modelling[J]. Natural Hazards and Earth System Sciences, 2004(4): 711-717.
    [11]
    崔圣华. 强震过程软弱层带地震动响应及大型滑坡启动机理研究[D]. 成都: 成都理工大学, 2017.

    CUI Sheng-hua. Seismic Responses of Wake Inter-Layer and Initiation Mechanisms of Large Landslide During Strong Earthquake[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese)
    [12]
    崔圣华, 裴向军, 黄润秋, 等. 汶川地震黄洞子沟右岸大型滑坡地质构造特征及成因[J]. 工程地质学报, 2019, 27(2): 437-450. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902025.htm

    CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu, et al. Geological features and causes of the Wenchuan earthquake triggered large landslide on right bank of Huangdongzi gully[J]. Journal of Engineering Geology, 2019, 27(2): 437-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902025.htm
    [13]
    曹琰波, 戴福初, 许冲, 等. 唐家山滑坡变形运动机制的离散元模拟[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2878-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm

    CAO Yi-bo, DAI Fu-chu, XU Chong, et al. Discrete element simulation of deformation and movement mechanism for Tangjiashan landslide[J]. Chinese Journal of Rock Mechanism and Engineering, 2011, 30(S1): 2878-2887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
    [14]
    王涛, 马寅生, 龙长兴, 等. 四川汶川地震断裂活动和次生地质灾害浅析[J]. 地质通报, 2008(11): 1913-1922. doi: 10.3969/j.issn.1671-2552.2008.11.022

    WANG Tao, MA Yin-sheng, LONG Chang-xing, et al. Fault activity of the Wenchuan earthquake in Sichuan, China and seismic secondary geohazards[J]. Geological Bulletin, 2008(11): 1913-1922. (in Chinese) doi: 10.3969/j.issn.1671-2552.2008.11.022
    [15]
    李奋生, 李勇, 颜照坤, 等. 构造、地貌和气候对汶川地震同震及震后地质灾害的控制作用—以龙门山北段通口河流域为例[J]. 自然杂志, 2012, 34(4): 216-218, 249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204006.htm

    LI Fu-sheng, LI Yong, YAN Zhao-kun, et al. Controlaction of tectonic, landforms and climate on the geological hazards in wenchuan earthquake coseismic and after earthquake: take tongkou river watershed, the northern longmen mountain for example[J]. Nature Journal, 2012, 34(4): 216-218, 249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204006.htm
    [16]
    黄润秋, 李为乐. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Run-qiu, LI Wei-le. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th[J]. Chinese Journal of Rock Mechanism and Engineering, 2008, 27(12): 2585-2592. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.12.028
    [17]
    黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 2009, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021

    HUANG Run-qiu. Mechanism and geomechanical models of landslide hazards triggered by Wenchuan M s8.0 earthquake[J]. Chinese Journal of Rock Mechanism and Engineering, 2009, 28(6): 1239-1249. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.021
    [18]
    许冲, 戴福初, 徐锡伟. 汶川地震滑坡灾害研究综述[J]. 地质论评, 2010, 56(6): 860-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm

    XU Chong, DAI Fu-chu, XU Xi-wei. Wenchuan Earthquake-induced landslides:an overview[J]. Geological Review, 2010, 56(6): 860-874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
    [19]
    唐辉明, 李德威, 胡新丽. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报, 2009, 17(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902000.htm

    TANG Hui-ming, LI De-wei, HU Xin-li. Faulting characteristics of Wenchuan earthquake and evalution theory of regional crustal stability[J]. Journal of Engineering Geology, 2009, 17(2): 145-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902000.htm
    [20]
    李勇, 黄润秋, 周荣军, 等. 龙门山地震带的地质背景与汶川地震的地表破裂[J]. 工程地质学报, 2009, 17(1): 3-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200901003.htm

    LI Yong, HUANG Run-qiu, ZHOU Rong-jun, et al. Geological background in Longmenshan seismic belt and surface rupture of Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1): 3-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200901003.htm
    [21]
    GODARD W, PIK R, LAVE J, et al. Late Cenozoic evolution of the central Longmenshan, eastern Tibet: insight from(U-Th)/He thermochronometry[J]. Tectonics, 2009, 28(5): 1-17.
    [22]
    WANG E Q, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9): 640-645.
    [23]
    四川省地质矿产局化探队. 清平幅H-48-17-A 1:5 万区域地质图说明书[R]. 成都: 四川省地质矿产局化探队, 1995: 63-69.

    Geochemical Ex-ploration Brigade of Geology &Mineral Resources Exploration & Development Bureau of Sichuan. Geological map Specificaton of the People's Republic of China (Scale:1:50000) Qingping Seria[R]. Chengdu: Geochemical Exploration Brigade of Geology & Mineral Resources Exploration & Development Bureau of Sichuan, 1995: 63-69. (in Chinese)
    [24]
    BRIDEAU M, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30-49.
    [25]
    MARINOS P, HOEK E. GSI: a geologically friendly tool for rock mass strength estimation[C]//GEOENG, Melbourne, 2000, Australia.
    [26]
    裴向军, 黄润秋, 崔圣华, 等. 大光包滑坡岩体碎裂特征及其工程地质意义[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3106-3115. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1064.htm

    PEI Xiang-jun, HUANG Run-qiu, CUI Sheng-hua, et al. The rock mass cataclastic characteristic of Daguangbao landslide and its engineering geological significance[J]. Chinese Journal of Mechanics and Engineering Geology, 2015, 34(S1): 3106-3115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1064.htm
    [27]
    KIM B, CAI H, KAISER M. et al. Estimation of block sizes for rock masses with non-persistent joints[J]. Rock Mechanics and Rock Engineering, 2007, 40: 169-192.
    [28]
    MARINOS V, MARINOS P, HOEK E. The geological strength index: applications and limitations[J]. Bulletin of Engineering Geology and the Environ-ment, 2005, 64: 55-65.
    [29]
    MARTINO S, MINUTOLO A, PACIELLO A. et al. Evidence of amplification effects in fault zone related to rock mass jointing[J]. Natural Hazards, 2006, 39: 419-449.
  • Cited by

    Periodical cited type(24)

    1. 李东明,聂一丹,晁阳,齐慧君,林潮宁. 基于改进聚类方法的大坝安全监测算法. 水力发电. 2025(04): 97-103+110 .
    2. 李扬涛,包腾飞,李田雨. 深水大坝缺陷鲁棒实时检测方法. 武汉大学学报(信息科学版). 2025(04): 684-698 .
    3. 穆明垚,王岳航,冯国磊. 水库除险加固方案设计与技术优化及坝体稳定性分析. 粘接. 2025(04): 163-165+169 .
    4. 邓鹏. 物联网技术在小水库大坝安全监测中的应用现状. 中国宽带. 2025(04): 95-97 .
    5. 董蕊. 基于BIM技术在土石坝渗流安全监控与预警. 地下水. 2025(02): 260-262 .
    6. 高寒. 机电设备中智能故障检测诊断技术的运用. 黑龙江科学. 2024(02): 64-66 .
    7. 徐新超,张若冰. 降水极端情况下某闸坝的自适应防洪安全运行管理研究. 珠江水运. 2024(02): 119-121 .
    8. 海日姑·阿布都热西提. 小型水库雨水情测报和大坝安全监测系统设计与实践. 中国水运(下半月). 2024(03): 88-90 .
    9. 尹光景,李晨玉,曾子彬,赵芃芃,雷鹏,常留红. 基于Vue.js+Django的大坝安全监测信息管理系统开发. 软件. 2024(01): 47-49+82 .
    10. 王猛,刘英英,周明明. 浅析大坝失事主要原因及应对措施方案. 水利规划与设计. 2024(05): 81-83+105 .
    11. 刘郴玲,蒋光灿. 基于龟石水库监测资料的大坝安全性态评估分析. 人民珠江. 2024(S1): 29-33 .
    12. 李东明,李龙龙,晁阳,李同春,齐慧君,林潮宁. 大坝安全监测数字孪生系统应用研究. 水力发电. 2024(09): 110-117 .
    13. 沈晓雷,余泉,季昊巍. 基于传感器的海上风电钢结构腐蚀检测方法. 中国水运. 2024(06): 91-92 .
    14. 盛金保,李宏恩,王芳. 智能大坝建设与韧性提升发展路径研究. 中国水利. 2024(24): 68-77 .
    15. 王琛,陈锦,谢应兵. 浅析现代水利工程成本控制理论及其存在问题. 红水河. 2023(01): 7-10 .
    16. 李松培,周江,黎海波,熊静,杨志虎,刘家森. 大坝安全在线监控及智能管理平台探索与应用. 云南水力发电. 2023(06): 173-176 .
    17. 窦飞,薛江寒. 岱山大坝渗流预测模型研究及渗漏问题分析. 海河水利. 2023(06): 61-68+112 .
    18. 李宗坤,王特,葛巍,景来红,罗秋实,杨风威,宋志宇,马福恒. 黄河流域梯级水库大坝风险评估与管控的战略思考. 人民黄河. 2023(07): 1-6 .
    19. 刘越,周志维. 基于小概率法的大坝多源监测预警阈值研究. 江西水利科技. 2023(04): 252-256 .
    20. 热米拉·塔什珀拉提. 溢洪道水流特性的性能模拟研究. 水利科技与经济. 2023(07): 122-127 .
    21. 何永祥. 甘肃永昌皇城水库大坝安全评价分析. 水利科学与寒区工程. 2023(09): 142-144 .
    22. 李宇文. 小型病险水库安全鉴定及加固改造实践——以水磨坑水库为例. 湖南水利水电. 2023(05): 75-78 .
    23. 李宗坤,王特,葛巍,景来红,崔秋晶,焦余铁. 考虑溃坝后果的水库工程等级划分方法. 水科学进展. 2023(05): 753-765 .
    24. 唐忠海,陈章傑,刘书婷,廖渝,李欣艺,李滟浩,袁士才. 无人机航测技术在大坝裂缝检测中的应用研究. 科技创新与生产力. 2022(10): 63-65 .

    Other cited types(9)

Catalog

    Article views (289) PDF downloads (226) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return