• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

尾矿管涌溃坝模式及下泄冲击特性试验研究

吴帅峰, 严俊, 蔡红, 肖建章, 杜继芳, 刘传鹏

吴帅峰, 严俊, 蔡红, 肖建章, 杜继芳, 刘传鹏. 尾矿管涌溃坝模式及下泄冲击特性试验研究[J]. 岩土工程学报, 2021, 43(11): 2134-2141. DOI: 10.11779/CJGE202111021
引用本文: 吴帅峰, 严俊, 蔡红, 肖建章, 杜继芳, 刘传鹏. 尾矿管涌溃坝模式及下泄冲击特性试验研究[J]. 岩土工程学报, 2021, 43(11): 2134-2141. DOI: 10.11779/CJGE202111021
WU Shuai-feng, YAN Jun, CAI Hong, XIAO Jian-zhang, DU Ji-fang, LIU Chuan-peng. Experimental study on dam break mode of tailing piping and discharge impact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2134-2141. DOI: 10.11779/CJGE202111021
Citation: WU Shuai-feng, YAN Jun, CAI Hong, XIAO Jian-zhang, DU Ji-fang, LIU Chuan-peng. Experimental study on dam break mode of tailing piping and discharge impact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2134-2141. DOI: 10.11779/CJGE202111021

尾矿管涌溃坝模式及下泄冲击特性试验研究  English Version

基金项目: 

国家重点研发计划项目 2017YFC0804607

国家自然科学基金项目 U19A2049

详细信息
    作者简介:

    吴帅峰(1988— ),男,河南登封人,高级工程师,博士后,主要从事大坝岩土工程与冲击动力学等方面的研究。E-mail:wusf@iwhr.com

  • 中图分类号: TU411

Experimental study on dam break mode of tailing piping and discharge impact characteristics

  • 摘要: 为分析尾矿管涌溃坝的演化规律,理清溃坝机理,揭示尾砂流下泄冲击特性,采用现场大型物理模型试验方法对尾矿库管涌溃坝全过程进行试验研究。结果表明:管涌形成冲刷通道,进而出现上部塌落、侧向冲刷的溃坝模式,溃口的发展经历了通道扩大、纵向下切和横向扩展3个过程,并基于此提出了7阶段的溃坝过程;尾砂流下泄速度随距离呈对数型衰减,并基于幂函数形式提出了涵盖冲击速度、密度、埋深的3参数的冲击力模型;尾砂流在坝体近端呈现下切冲刷,远端呈现沉积的特征,在弯道处由于流向转变的过程呈现外侧冲刷掏蚀,内侧沉积淤积的特性,并基于此提出了尾矿坝防护的建议。以上研究成果为尾矿库的防灾减灾提供理论基础。
    Abstract: In order to analyze the evolution law of tailing pipe break, clarify the mechanism of tailing dam break, and reveal the impact characteristics of tailing flow, a large-scale physical model test method is used to study the whole process of piping break of a tailing reservoir. The results show that the scour channel is formed by piping, and then the dam break mode of the upper collapse and lateral scour occurs. The development of the breach has gone through three processes: channel expansion, longitudinal undercutting and transverse expansion. Based on this, a 7-stage dam break process is proposed. The tailing flow velocity decays logarithmically with distance, and the 3-parameter impact force model including impact velocity, density and buried mode is as follows: the depth is proposed based on the power function form, and the dam break tailing flow presents undercutting erosion at the near end of the dam body and deposition at the far end. Due to the change process of flow direction at the turning point, it presents the characteristics erosion at the outer side and deposition at the inner side. Based on this, some suggestions for protection of tailing dams are put forward. The above research results may provide theoretical basis for disaster prevention and mitigation of tailing ponds.
  • 图  1   试验区域设置

    Figure  1.   Test area

    图  2   尾矿坝试验模型设计

    Figure  2.   Model design of tests on tailing dam

    图  3   尾矿坝实体模型

    Figure  3.   Physical model for tailing dam

    图  4   库容水位曲线

    Figure  4.   Curve of water level

    图  5   尾矿砂颗分曲线

    Figure  5.   Grain-size distribution curve of tailings

    图  6   溃口演化及下泄过程记录网格

    Figure  6.   Record grids of breach evolution and discharge process

    图  7   尾砂流下泄冲击记录仪器安装

    Figure  7.   Installation of impact recording instrument for tailing discharge

    图  8   溃坝发展过程

    Figure  8.   Dam break development process

    图  9   水位下降与时间关系曲线

    Figure  9.   Relationship between water level and time

    图  10   各位置冲击力时程曲线

    Figure  10.   Time-history curves of impact force at each position

    图  11   最大流速随距离的衰减形式

    Figure  11.   Attenuation form of maximum velocity with distance

    图  12   流速与冲击力对应关系

    Figure  12.   Corresponding relationship between velocity and impact force

    图  13   溃坝前后倾斜摄影地理模型

    Figure  13.   Photographical geographical model for slope before and after dam break

    图  14   转弯区冲刷及沉积区划分

    Figure  14.   Division of erosion and sedimentary area in turning area

    图  15   冲刷严重区域位置

    Figure  15.   Areas with severe erosion

    图  16   转弯处冲刷特征

    Figure  16.   Erosion characteristics at turning point

    表  1   坝体各位置取样物理力学性质

    Table  1   Physical and mechanical properties of sampling at each position of dam body

    取样位置含水率/%密度/(g·cm-3)干密度/(g·cm-3)摩擦角/(°)黏聚力/kPa
    左坝肩8.061.661.5357.9731.66
    坝顶9.571.691.5550.2132.45
    右坝肩6.651.751.6461.4436.06
    左坝坡中7.031.721.6155.9830.71
    坝坡中4.361.701.6359.9432.72
    右坝坡中6.531.671.5757.2730.90
    左坝脚6.291.821.7158.0935.27
    右坝脚5.841.791.6957.9731.38
    下载: 导出CSV

    表  2   尾砂下泄流速与冲击力关系

    Table  2   Relationship between velocity of tailing discharge and impact force

    流速/(m·s-1)冲击力/kPa
    1.6217.14
    1.7921.69
    2.2119.17
    2.6022.64
    3.0826.58
    4.6744.08
    5.4457.29
    6.1873.96
    6.5485.22
    8.03137.43
    下载: 导出CSV

    表  3   竖直渠道内的冲刷深度

    Table  3   Scour depths in vertical channel

    距坝址距离/m原始高程/m冲刷后高程/m冲刷深度/cm
    15561.05560.7926
    25560.85560.5926
    35560.63560.3924
    45560.42560.1824
    55560.24560.0123
    下载: 导出CSV
  • [1]

    SHU Y B, LI P L, LI Z X. Risk assessment regarding tailings dam break[J]. Advanced Materials Research, 2012, 433/434/435/436/437/438/439/440: 1864-1868.

    [2]

    KOSSOFF D, DUBBIN W E, ALFREDSSON M, et al. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation[J]. Applied Geochemistry, 2014, 51: 229-245. doi: 10.1016/j.apgeochem.2014.09.010

    [3] 于广明, 宋传旺, 潘永战, 等. 尾矿坝安全研究的国外新进展及我国的现状和发展态势[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3238-3248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1091.htm

    YU Guang-ming, SONG Chuan-wang, PAN Yong-zhan, et al. Review of new progress in tailing dam safety in foreign research and current state with development Trent in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3238-3248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1091.htm

    [4] 梅国栋, 王云海. 我国尾矿库事故统计分析与对策研究[J]. 中国安全生产科学技术, 2010, 6(3): 211-213. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201003048.htm

    MEI Guo-dong, WANG Yun-hai. Statistic analysis and countermeasure study on tailings pond accidents in China[J]. Journal of Safety Science and Technology, 2010, 6(3): 211-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201003048.htm

    [5] 吴宗之, 梅国栋. 尾矿库事故统计分析及溃坝成因研究[J]. 中国安全科学学报, 2014, 24(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201409014.htm

    WU Zong-zhi, MEI Guo-dong. Statistical analysis of tailings pond accidents and cause analysis of dam failure[J]. China Safety Science Journal, 2014, 24(9): 70-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201409014.htm

    [6] 门永生, 柴建设. 我国尾矿库安全现状及事故防治措施[J]. 中国安全生产科学技术, 2009, 5(1): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK200901014.htm

    MEN Yong-sheng, CHAI Jian-she. The current safety situation of tailing reservoir in China and preventive measures[J]. Journal of Safety Science and Technology, 2009, 5(1): 48-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK200901014.htm

    [7]

    HANSON G J, COOK K R, BRITTON S L. Observed erosion Processes During Embankment Overtopping Tests[C]//American Society of Agricultural and Biological Engineers, 2003, Las Vegas.

    [8]

    HASSAN M, MORRIS M, HASON G, et al. Breach Formation: Laboratory and numerical modeling of breach formation[C]//ASDSO's 21st Annual Conference, 2004, Arizona.

    [9]

    ALONSO E E, GENS A. Aznalcóllar dam failure. Part 1: Field observations and material properties[J]. Géotechnique, 2006, 56(3): 165-183. doi: 10.1680/geot.2006.56.3.165

    [10]

    ALONSO E E, GENS A. Aznalcóllar dam failure. part 3: dynamics of the motion[J]. Géotechnique, 2006, 56(3): 203-210. doi: 10.1680/geot.2006.56.3.203

    [11]

    GENS A, ALONSO E E. Aznalcóllar dam failure. part 2: stability conditions and failure mechanism[J]. Géotechnique, 2006, 56(3): 185-201.

    [12]

    LOBOVSKÝ L, BOTIA-VERA E, CASTELLANA F, et al. Experimental investigation of dynamic pressure loads during dam break[J]. Journal of Fluids and Structures, 2014, 48: 407-434.

    [13]

    ZANDARÍN M T, OLDECOP L A, RODRÍGUEZ R, et al. The role of capillary water in the stability of tailing dams[J]. Engineering Geology, 2009, 105(1/2): 108-118.

    [14] 钟启明, 陈生水, 邓曌. 均质土坝漫顶溃坝过程数学模型研究及应用[J]. 水利学报, 2016, 47(12): 1519-1527. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201612007.htm

    ZHONG Qi-ming, CHEN Sheng-shui, DENG Zhao. Research on mathematical model for homogeneous earthen dam breach process due to overtopping failure and its application[J]. Journal of Hydraulic Engineering, 2016, 47(12): 1519-1527. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201612007.htm

    [15]

    AURELI F, DAZZI S, MARANZONI A, et al. Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure[J]. Advances in Water Resources, 2015, 76: 29-42.

    [16]

    YUAN L W, ZHU N, LI S M, et al. Three-dimensional numerical modeling study on the failure evolution of tailing dam[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(4): 2300-2305.

    [17] 阮德修, 胡建华, 周科平, 等. 基于FLO2D与3DMine耦合的尾矿库溃坝灾害模拟[J]. 中国安全科学学报, 2012, 22(8): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201208026.htm

    RUAN De-xiu, HU Jian-hua, ZHOU Ke-ping, et al. Simulation of tailings dam failure disaster based on coupled FLO2D and 3DMine[J]. China Safety Science Journal, 2012, 22(8): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201208026.htm

    [18]

    BLIGHT G E. Destructive mudflows as a consequence of tailings dyke failures[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 1997, 125(1): 9-18.

    [19]

    SONG L, YANG Z X, WANG H, et al. On the seepage stability of a tailing dam in Wushan copper mine[J]. Advanced Materials Research, 2012, 594/595/596/597: 207-212.

    [20]

    RICO M, BENITO G, DÍEZ-HERRERO A. Floods from tailings dam failures[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 79-87.

    [21]

    KOCAMAN S, OZMEN-CAGATAY H. Investigation of dam-break induced shock waves impact on a vertical wall[J]. Journal of Hydrology, 2015, 525: 1-12.

    [22]

    KHALID M S. Dynamic analysis of an upstream, tailings dam[J]. Journal of the American Ceramic Society, 2013, 99(1): 209-221.

    [23]

    SONG D, NG C W W, CHOI C, et al. Influence of debris flow solid fraction on rigid barrier impact[J]. Canadian Geotechnical Journal, 2017, 54(10): 1421-1434.

  • 期刊类型引用(3)

    1. 范文晓. 南阳膨胀土浸水变形特性及微观结构研究. 建筑科学. 2025(01): 126-135 . 百度学术
    2. 李从安,许晓彤,沈登乐,王卫,胡波. 弱膨胀土三轴膨胀模型及其应用. 长江科学院院报. 2023(10): 137-141 . 百度学术
    3. 叶云雪,邹维列,韩仲,谢鹏,张俊峰,徐永福. 考虑初始状态影响的膨胀土一维膨胀特性研究. 岩土工程学报. 2021(08): 1518-1525 . 本站查看

    其他类型引用(3)

图(16)  /  表(3)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  29
  • PDF下载量:  123
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-01-18
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回