• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Shuai-feng, YAN Jun, CAI Hong, XIAO Jian-zhang, DU Ji-fang, LIU Chuan-peng. Experimental study on dam break mode of tailing piping and discharge impact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2134-2141. DOI: 10.11779/CJGE202111021
Citation: WU Shuai-feng, YAN Jun, CAI Hong, XIAO Jian-zhang, DU Ji-fang, LIU Chuan-peng. Experimental study on dam break mode of tailing piping and discharge impact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2134-2141. DOI: 10.11779/CJGE202111021

Experimental study on dam break mode of tailing piping and discharge impact characteristics

More Information
  • Received Date: January 18, 2021
  • Available Online: December 01, 2022
  • In order to analyze the evolution law of tailing pipe break, clarify the mechanism of tailing dam break, and reveal the impact characteristics of tailing flow, a large-scale physical model test method is used to study the whole process of piping break of a tailing reservoir. The results show that the scour channel is formed by piping, and then the dam break mode of the upper collapse and lateral scour occurs. The development of the breach has gone through three processes: channel expansion, longitudinal undercutting and transverse expansion. Based on this, a 7-stage dam break process is proposed. The tailing flow velocity decays logarithmically with distance, and the 3-parameter impact force model including impact velocity, density and buried mode is as follows: the depth is proposed based on the power function form, and the dam break tailing flow presents undercutting erosion at the near end of the dam body and deposition at the far end. Due to the change process of flow direction at the turning point, it presents the characteristics erosion at the outer side and deposition at the inner side. Based on this, some suggestions for protection of tailing dams are put forward. The above research results may provide theoretical basis for disaster prevention and mitigation of tailing ponds.
  • [1]
    SHU Y B, LI P L, LI Z X. Risk assessment regarding tailings dam break[J]. Advanced Materials Research, 2012, 433/434/435/436/437/438/439/440: 1864-1868.
    [2]
    KOSSOFF D, DUBBIN W E, ALFREDSSON M, et al. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation[J]. Applied Geochemistry, 2014, 51: 229-245. doi: 10.1016/j.apgeochem.2014.09.010
    [3]
    于广明, 宋传旺, 潘永战, 等. 尾矿坝安全研究的国外新进展及我国的现状和发展态势[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3238-3248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1091.htm

    YU Guang-ming, SONG Chuan-wang, PAN Yong-zhan, et al. Review of new progress in tailing dam safety in foreign research and current state with development Trent in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3238-3248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1091.htm
    [4]
    梅国栋, 王云海. 我国尾矿库事故统计分析与对策研究[J]. 中国安全生产科学技术, 2010, 6(3): 211-213. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201003048.htm

    MEI Guo-dong, WANG Yun-hai. Statistic analysis and countermeasure study on tailings pond accidents in China[J]. Journal of Safety Science and Technology, 2010, 6(3): 211-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201003048.htm
    [5]
    吴宗之, 梅国栋. 尾矿库事故统计分析及溃坝成因研究[J]. 中国安全科学学报, 2014, 24(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201409014.htm

    WU Zong-zhi, MEI Guo-dong. Statistical analysis of tailings pond accidents and cause analysis of dam failure[J]. China Safety Science Journal, 2014, 24(9): 70-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201409014.htm
    [6]
    门永生, 柴建设. 我国尾矿库安全现状及事故防治措施[J]. 中国安全生产科学技术, 2009, 5(1): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK200901014.htm

    MEN Yong-sheng, CHAI Jian-she. The current safety situation of tailing reservoir in China and preventive measures[J]. Journal of Safety Science and Technology, 2009, 5(1): 48-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK200901014.htm
    [7]
    HANSON G J, COOK K R, BRITTON S L. Observed erosion Processes During Embankment Overtopping Tests[C]//American Society of Agricultural and Biological Engineers, 2003, Las Vegas.
    [8]
    HASSAN M, MORRIS M, HASON G, et al. Breach Formation: Laboratory and numerical modeling of breach formation[C]//ASDSO's 21st Annual Conference, 2004, Arizona.
    [9]
    ALONSO E E, GENS A. Aznalcóllar dam failure. Part 1: Field observations and material properties[J]. Géotechnique, 2006, 56(3): 165-183. doi: 10.1680/geot.2006.56.3.165
    [10]
    ALONSO E E, GENS A. Aznalcóllar dam failure. part 3: dynamics of the motion[J]. Géotechnique, 2006, 56(3): 203-210. doi: 10.1680/geot.2006.56.3.203
    [11]
    GENS A, ALONSO E E. Aznalcóllar dam failure. part 2: stability conditions and failure mechanism[J]. Géotechnique, 2006, 56(3): 185-201.
    [12]
    LOBOVSKÝ L, BOTIA-VERA E, CASTELLANA F, et al. Experimental investigation of dynamic pressure loads during dam break[J]. Journal of Fluids and Structures, 2014, 48: 407-434.
    [13]
    ZANDARÍN M T, OLDECOP L A, RODRÍGUEZ R, et al. The role of capillary water in the stability of tailing dams[J]. Engineering Geology, 2009, 105(1/2): 108-118.
    [14]
    钟启明, 陈生水, 邓曌. 均质土坝漫顶溃坝过程数学模型研究及应用[J]. 水利学报, 2016, 47(12): 1519-1527. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201612007.htm

    ZHONG Qi-ming, CHEN Sheng-shui, DENG Zhao. Research on mathematical model for homogeneous earthen dam breach process due to overtopping failure and its application[J]. Journal of Hydraulic Engineering, 2016, 47(12): 1519-1527. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201612007.htm
    [15]
    AURELI F, DAZZI S, MARANZONI A, et al. Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure[J]. Advances in Water Resources, 2015, 76: 29-42.
    [16]
    YUAN L W, ZHU N, LI S M, et al. Three-dimensional numerical modeling study on the failure evolution of tailing dam[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(4): 2300-2305.
    [17]
    阮德修, 胡建华, 周科平, 等. 基于FLO2D与3DMine耦合的尾矿库溃坝灾害模拟[J]. 中国安全科学学报, 2012, 22(8): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201208026.htm

    RUAN De-xiu, HU Jian-hua, ZHOU Ke-ping, et al. Simulation of tailings dam failure disaster based on coupled FLO2D and 3DMine[J]. China Safety Science Journal, 2012, 22(8): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201208026.htm
    [18]
    BLIGHT G E. Destructive mudflows as a consequence of tailings dyke failures[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 1997, 125(1): 9-18.
    [19]
    SONG L, YANG Z X, WANG H, et al. On the seepage stability of a tailing dam in Wushan copper mine[J]. Advanced Materials Research, 2012, 594/595/596/597: 207-212.
    [20]
    RICO M, BENITO G, DÍEZ-HERRERO A. Floods from tailings dam failures[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 79-87.
    [21]
    KOCAMAN S, OZMEN-CAGATAY H. Investigation of dam-break induced shock waves impact on a vertical wall[J]. Journal of Hydrology, 2015, 525: 1-12.
    [22]
    KHALID M S. Dynamic analysis of an upstream, tailings dam[J]. Journal of the American Ceramic Society, 2013, 99(1): 209-221.
    [23]
    SONG D, NG C W W, CHOI C, et al. Influence of debris flow solid fraction on rigid barrier impact[J]. Canadian Geotechnical Journal, 2017, 54(10): 1421-1434.
  • Related Articles

    [1]JIANG Shuihua, YUAN Zhirong, LIU Xian, HUANG Jinsong, ZHOU Chuangbing. Rainfall infiltration model considering spatial variability of multiple layers in transition layer and its application in slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 255-264. DOI: 10.11779/CJGE20230996
    [2]DENG Zhiping, ZHONG Min, PAN Min, ZHENG Kehong, NIU Jingtai, JIANG Shuihua. Slope reliability analysis considering spatial variability of parameters based on efficient surrogate model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 273-281. DOI: 10.11779/CJGE20221338
    [3]ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
    [4]JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900-907. DOI: 10.11779/CJGE202005012
    [5]CHEN Zhao-hui, LEI Jian, HUANG Jing-hua, CHENG Xiao-hui, ZHANG Zhi-chao. Finite element limit analysis of slope stability considering spatial variability of soil strengths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 985-993. DOI: 10.11779/CJGE201806003
    [6]WANG Chang-hong, ZHU He-hua, XU Zi-chuan, LI Jian-gao. Ground surface settlement of shield tunnels considering spatial variability of multiple geotechnical parameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 270-277. DOI: 10.11779/CJGE201802007
    [7]DONG Hui, HUANG Run-qiu, LUO Xiao, LUO Zheng-dong, JIANG Xiu-zi. Spatial distribution and variability of infiltration characteristics for shallow slope of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1501-1509. DOI: 10.11779/CJGE201708018
    [8]YANG Ge, ZHU Sheng. Seismic response of rockfill dams considering spatial variability of rockfill materials via random finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1822-1832. DOI: 10.11779/CJGE201610011
    [9]TANG Yu-geng, KUNG Gordon Tung-chin. Basal-heave analysis of a braced excavation considering spatial variability of soft ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 542-545.
    [10]QI Xiao-hui, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Stochastic analysis method of critical slip surfaces in soil slopes considering spatial variability[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 745-753.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return