• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和单层土体一维热固结精确解

钮家军, 凌道盛, 王秀凯, 单振东, 赵云

钮家军, 凌道盛, 王秀凯, 单振东, 赵云. 饱和单层土体一维热固结精确解[J]. 岩土工程学报, 2019, 41(9): 1715-1723. DOI: 10.11779/CJGE201909016
引用本文: 钮家军, 凌道盛, 王秀凯, 单振东, 赵云. 饱和单层土体一维热固结精确解[J]. 岩土工程学报, 2019, 41(9): 1715-1723. DOI: 10.11779/CJGE201909016
NIU Jia-jun, LING Dao-sheng, WANG Xiu-kai, SHAN Zhen-dong, ZHAO Yun. Exact solutions for one-dimensional thermal consolidation of single-layer saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1715-1723. DOI: 10.11779/CJGE201909016
Citation: NIU Jia-jun, LING Dao-sheng, WANG Xiu-kai, SHAN Zhen-dong, ZHAO Yun. Exact solutions for one-dimensional thermal consolidation of single-layer saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1715-1723. DOI: 10.11779/CJGE201909016

饱和单层土体一维热固结精确解  English Version

基金项目: 国家重点研发计划项目(2016YFC0800202); 国家自然科学基金项目(51578502)
详细信息
    作者简介:

    钮家军(1993— ),男,博士研究生,主要从事热-水-力耦合现象的解析解研究。E-mail:niu0918@zju.edu.cn。

    通讯作者:

    凌道盛,E-mail:dsling@zju.edu.cn

Exact solutions for one-dimensional thermal consolidation of single-layer saturated soil

  • 摘要: 岩土体在非等温场下的固结响应一直是研究热点。基于考虑渗流的饱和土热固结控制方程,给出了一种三类任意边界条件下,饱和单层土体一维热固结精确解的求解方法。首先,利用函数φ将对温度和超静孔压的求解转换为对函数ϕ的求解,采用分离变量法,结合边界条件得到微分方程的特征函数。然后,将非齐次边界条件齐次化,利用微分方程的特征函数,采用系数变易法,给出非齐次边界条件下的精确级数解。最后,通过算例揭示土体边界的透水条件及温度变化对土体热固结响应影响显著。
    Abstract: The consolidation under the non-isothermal field has long been the research focus. Based on the governing equations which take seepage flow into consideration, a new method to obtain exact solutions for one-dimensional thermal consolidation of single-layer saturated soil with three types of arbitrary boundary conditions is proposed. Firstly, the aim to solve temperature and excess pore pressure is transformed to solve the function ϕ by introducing the function φ. The eigenfunctions of differential equations are achieved with boundary conditions by the method of separation of variables. The nonhomogeneous boundary conditions are then transformed into homogeneous ones. The series form exact solutions are put forward according to the method of undetermined coefficients and eigenfunctions of differential equations. Finally, the conclusions that the seepage and temperature boundary play an important role in the thermal consolidation of the soil are reached by case studies.
  • [1] BIOT M A.General theory of three‐dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
    [2] BIOT M A.Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics, 1956, 27(3): 240-253.
    [3] BOOKER J R, SAVVIDOU C.Consolidation around a point heat source[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1985, 9(2): 173-184.
    [4] SMITH D W, BOOKER J R.Boundary element analysis of linear thermoelastic consolidation[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1996, 20(7): 457-488.
    [5] ZHOU Y, RAJAPAKSE R K N D, GRAHAM J. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration[J]. International Journal of Solids & Structures, 1998, 35(34/35): 4659-4683.
    [6] BOOKER J R, SAVVIDOU C.Consolidation around a spherical heat source[J]. International Journal of Solids & Structures, 1984, 20(11/12): 1079-1090.
    [7] MCTIGUE D F.Thermoelastic response of fluid-saturated porous rock[J]. Journal of Geophysical Research, 1986, 91(B9): 9533-9542.
    [8] GIRAUD A, ROUSSET G.Thermoelastic and thermoplastic response of a porous space submitted to a decaying heat source[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 19(7): 475-495.
    [9] BLOND E, SCHMITT N, FRANÇOIS H. Response of saturated porous media to cyclic thermal loading[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 27(11): 883-904.
    [10] BAI M, ABOUSLEIMAN Y.Thermoporoelastic coupling with application to consolidation[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1997, 21(2): 121-132.
    [11] 白冰. 岩土颗粒介质非等温一维热固结特性研究[J]. 工程力学, 2005, 22(5): 186-191.
    (BAI Bai.One-dimensional thermal consolidation characteristics of geotechnical media under non-isothermal condition[J]. Engineering Mechanics, 2005, 22(5): 186-191. (in Chinese))
    [12] BAI B.Fluctuation responses of saturated porous media subjected to cyclic thermal loading[J]. Computers & Geotechnics, 2006, 33(8): 396-403.
    [13] 白冰. 循环温度荷载作用下饱和多孔介质热-水-力耦合响应[J]. 工程力学, 2007, 24(5): 87-92.
    (BAI Bai.Thermo-Hydro-Mechanical responses of saturated porous media under cyclic thermal loading[J]. Engineering Mechanics, 2007, 24(5): 87-92. (in Chinese))
    [14] BAI B.Thermal consolidation of layered porous half-space to variable thermal loading[J]. Applied Mathematics and Mechanics (English Edition), 2006, 11(27): 1531-1539.
    [15] 王路君, 艾智勇. 衰变热源作用下饱和多孔介质热固结问题的扩展精细积分法[J]. 力学学报, 2017, 49(2): 324-334.
    (WANG Lu-jun, AI Zhi-yong.Epim for thermal consolidation problems of saturated porous media subjected to a decaying heat source[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 324-334.(in Chinese))
    [16] SMITH D W.Boundary element analysis of heat flow and consolidation for geotechnical applications[D]. Sydney: University of Sydney, 1990.
  • 期刊类型引用(7)

    1. 韩涛,周扬,卢萌盟. 基于相似变换法的半无限空间饱和土一维热固结解析解. 岩土工程学报. 2025(05): 1055-1063 . 本站查看
    2. 周亚东,李龙辉,陈思源. 饱和土一维大变形非线性热固结模型. 岩石力学与工程学报. 2023(09): 2306-2314 . 百度学术
    3. 江文豪,冯晨,李江山. 饱和黏土一维非线性固结与热传导耦合模型. 岩石力学与工程学报. 2023(10): 2588-2600 . 百度学术
    4. 田改垒,张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型. 岩土工程学报. 2022(02): 278-287 . 本站查看
    5. 韩逸冬,邓岳保,曹光形,朱瑶宏,姚燕明. 考虑循环变温的软土热固结模型. 岩土力学. 2022(10): 2768-2776 . 百度学术
    6. 钮家军,王秀凯,凌道盛,巩师林,石吉森. 半无限空间饱和土一维热固结精确积分解. 岩土工程学报. 2021(08): 1426-1433 . 本站查看
    7. 周扬,武子寒,许程,卢萌盟,周国庆. 高温下饱和冻土一维融化热固结模型及解答. 岩土工程学报. 2021(12): 2190-2199 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  337
  • HTML全文浏览量:  27
  • PDF下载量:  188
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-11-19
  • 发布日期:  2019-09-24

目录

    /

    返回文章
    返回