• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SU Si-yang, KONG De-qiong, WU Lei-ye, ZHU Bin. Development and validation of a modified moving boundary model to simulate liquefaction-solidification behaviors of seabed under wave loading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1156-1165. DOI: 10.11779/CJGE202206021
Citation: SU Si-yang, KONG De-qiong, WU Lei-ye, ZHU Bin. Development and validation of a modified moving boundary model to simulate liquefaction-solidification behaviors of seabed under wave loading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1156-1165. DOI: 10.11779/CJGE202206021

Development and validation of a modified moving boundary model to simulate liquefaction-solidification behaviors of seabed under wave loading

More Information
  • Received Date: August 07, 2021
  • Available Online: September 22, 2022
  • An analysis method is proposed based on an existing moving boundary model to assess the response of seabed under wave loading, accounting for the effects of fluid viscosity and the boundary of the seabed. The potential flow equations in the original model are replaced by the laminar Navier-Stokes equations so that the viscous two-layer fluid system consisting of the liquefied/fluidized seabed and the water above it can be described reasonably. Meanwhile, the source term in the governing equations for the wave-induced shear stress calculation model is updated to consider the effects of the seabed boundary. The centrifugal model tests are carried out to validate and calibrate this model, as well as to demonstrate its capability of modelling the liquefaction/solidification of the seabed, in terms of the development of excess pore pressure and void ratio. The results show that the liquefied seabed has a high viscosity, which may lead to overestimation of the seabed movement amplitude, especially for sandy soils. Comparisons between the calculations based on seabed with infinite and finite depths show discernible discrepancies, thus it is suggested the effects of the seabed boundary should be considered in modelling. This model is also found to be capable of capturing the increase in soil strength within a certain depth after wave loading and the amplification of the pore pressure amplitude.
  • [1]
    BJERRUM L. Geotechnical problems involved in foundations of structures in the North Sea[J]. Géotechnique, 1973, 23(3): 319–358. doi: 10.1680/geot.1973.23.3.319
    [2]
    ISHIHARA K, YAMAZAKI A. Analysis of wave-induced liquefaction in seabed deposits of sand[J]. Soils and Foundations, 1984, 24(3): 85–100. doi: 10.3208/sandf1972.24.3_85
    [3]
    杨少丽, 沈渭铨, 杨作升. 波浪作用下海底粉砂液化的机理分析[J]. 岩土工程学报, 1995(4): 28–37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC504.003.htm

    YANG Shao-li, SHEN Wei-quan, YANG Zuo-sheng. The mechanism analysis of seafloor silt liquefaction under wave loads[J]. Chinese Journal of Geotechnical Engineering, 1995(4): 28–37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC504.003.htm
    [4]
    来向华, 陈云敏. 海床—管道原位检测及水动力响应分析[D]. 杭州: 浙江大学, 2009.

    LAI Xiang-hua, CHEN Yun-min. Reasearch on In-Situ Inspection and Hydrodynamic Analysis of Seabed-Pipeline System[D]. Hangzhou: Zhejiang University, 2009. (in Chinese)
    [5]
    MIYAMOTO J, SASSA S, SEKIGUCHI H. Progressive solidification of a liquefied sand layer during continued wave loading[J]. Géotechnique, 2004, 54(10): 617–629. doi: 10.1680/geot.2004.54.10.617
    [6]
    SUMER B M, HATIPOGLU F, FREDSØE J, et al. The sequence of sediment behaviour during wave-induced liquefaction[J]. Sedimentology, 2006, 53(3): 611–629. doi: 10.1111/j.1365-3091.2006.00763.x
    [7]
    贾永刚, 史文君, 单红仙, 等. 黄河口粉土强度丧失与恢复过程现场振动试验研究[J]. 岩土力学, 2005, 26(3): 351–358. doi: 10.3969/j.issn.1000-7598.2005.03.004

    JIA Yong-gang, SHI Wen-jun, SHAN Hong-xian, et al. In-situ test study on silt strength's loss and recovery due to vibration load in the Yellow River mouth[J]. Rock and Soil Mechanics, 2005, 26(3): 351–358. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.03.004
    [8]
    栾茂田, 张晨明, 王栋, 等. 波浪作用下海床孔隙水压力发展过程与液化的数值分析[J]. 水利学报, 2004(2): 94–100. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200402016.htm

    LUAN Mao-tian, ZHANG Chen-ming, WANG Dong, et al. Numerical analysis of residual pore water pressure development and evaluation of liquefaction potential of seabed under wave loading[J]. Journal of Hydraulic Engineering, 2004(2): 94–100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200402016.htm
    [9]
    YE J H, JENG D, WANG R, et al. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction[J]. Journal of Fluids and Structures, 2013, 42: 333–357. doi: 10.1016/j.jfluidstructs.2013.04.008
    [10]
    王良民, 叶剑红, 朱长歧. 近海欠密实砂质海床内波致渐进液化特征研究[J]. 岩土力学, 2015, 36(12): 3583–3588. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512031.htm

    WANG Liang-min, YE Jian-hong, ZHU Chang-qi. Investigation on the wave-induced progressive liquefaction of offshore loosely deposited sandy seabed[J]. Rock and Soil Mechanics, 2015, 36(12): 3583–3588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512031.htm
    [11]
    ZHAO H Y, JENG D S, GUO Z, et al. Two-dimensional model for pore pressure accumulations in the vicinity of a buried pipeline[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4): 042001. doi: 10.1115/1.4027955
    [12]
    SASSA S, SEKIGUCHI H, MIYAMOTO J. Analysis of progressive liquefaction as a moving-boundary problem[J]. Géotechnique, 2001, 51(10): 847–857. doi: 10.1680/geot.2001.51.10.847
    [13]
    DALRYMPLE R A, LIU P L-F. Waves over soft muds: a two-layer fluid model[J]. Journal of Physical Oceanography, 1978, 8(6): 1121–1131. doi: 10.1175/1520-0485(1978)008<1121:WOSMAT>2.0.CO;2
    [14]
    LIU Z, JENG D S, CHAN A H C, et al. Wave-induced progressive liquefaction in a poro-elastoplastic seabed: a two-layered model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(5): 591–610. doi: 10.1002/nag.734
    [15]
    HSU J R C, JENG D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785–807. doi: 10.1002/nag.1610181104
    [16]
    刘占阁. 波浪作用下海床累积孔隙水压力响应与液化分析[D]. 大连: 大连理工大学, 2008.

    LIU Zhan-ge. Study on Wave-Induced Response of Progressive Pore Pressure and Liquefaction in Seabed[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
    [17]
    WU L Y, KONG D Q, ZHU B, et al. Centrifuge modelling of wave-induced seabed response in clay[J]. Géotechnique, doi: https://doi.org/10.1680/jeot.21.00105.
    [18]
    吴雷晔. 波浪作用下地基演变及管土相互作用模型试验与数值分析[D]. 杭州: 浙江大学, 2021.

    WU Lei-ye. Experimental and Numerical Study on Seabed Response and Pipe-Soil Interaction under Waves[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
    [19]
    鲁双. 海积超软土强度与流变特性试验研究[D]. 大连: 大连理工大学, 2017.

    LU Shuang. The Experimental Study on the Strength and Rheological Properties of Ultra-Soft Marine Soil[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
  • Related Articles

    [1]LIAO Raoping, CHEN Yonggui, LIU Cong, YE Weimin, WU Dongbei, WANG Qiong. Research advances in chemical interaction mechanism between highly compacted bentonite and pore solution[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1089-1098. DOI: 10.11779/CJGE20240208
    [2]LI Yucheng, CHEN Yonggui, LIU Li, YE Weimin, WANG Qiong. Advances in studies of multi-scale swelling pressure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2457-2464. DOI: 10.11779/CJGE20230293
    [3]MA Jing, CHEN Yonggui, LIU Cong, YE Weimin, WANG Qiong. Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. DOI: 10.11779/CJGE20220911
    [4]HE Jia, HUANG Xin, YAN Fengyuan, WANG Hao. Research advances in bio-inspired geotechnics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1200-1211. DOI: 10.11779/CJGE20220254
    [5]LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
    [6]CHEN Yong-gui, CAI Ye-qing, YE Wei-min, CUI Yu-jun, CHEN Bao. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2149-2158. DOI: 10.11779/CJGE202112001
    [7]CAI Ye-qing, CHEN Yong-gui, YE Wei-min, CUI Yu-jun, CHEN Bao. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. DOI: 10.11779/CJGE202011004
    [8]ZENG Chao-feng, XUE Xiu-li, MEI Guo-xiong. A review of recent advances in permeable pipe pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 228-231. DOI: 10.11779/CJGE2017S2055
    [9]HE Jia, CHU Jian, LIU Han-long, GAO Yu-feng, LI Bing. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. DOI: 10.11779/CJGE201604008
    [10]Advances of dam construction techniques in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1678-1687.
  • Cited by

    Periodical cited type(17)

    1. 义扬,肖映雄,余科. 任意多边形骨料混凝土细观模型的建立与数值模拟. 山东大学学报(工学版). 2025(01): 97-107 .
    2. 朱艳贵. 不等向固结时混合土剪切行为的离散元分析. 工业建筑. 2024(03): 167-173 .
    3. 李冠鹏,陈占扬,李洪博,武海荣,黄鹏,刘子墨,杜文韬. 基于三维细观的混凝土靶板侵彻仿真研究. 河南城建学院学报. 2024(06): 48-55 .
    4. 王泽华,李昺,邢磊,龚文平. 基于PFC~(3D)的滑坡与建筑物相互作用过程研究. 安全与环境工程. 2023(01): 107-118+191 .
    5. 杨忠平,刘浩宇,李进,李绪勇,刘新荣. 土石混合料–基岩接触面剪切力学特性及剪切带变形特征研究. 岩石力学与工程学报. 2023(02): 292-306 .
    6. 朱艳贵. 考虑粗颗粒真实形状的混合土不排水剪切特性离散元研究. 公路交通科技. 2023(02): 28-35 .
    7. 茹晓军. 考虑细观特征的土石混合体边坡破坏机制分析. 铁道建筑技术. 2023(04): 1-4+10 .
    8. 贾聿颉,李冬冬. 基于筛分试验的土石混合体三维数值建模方法研究. 华北水利水电大学学报(自然科学版). 2023(02): 97-103 .
    9. 张宏虎,白伟,孙明祥,邓涛. 闽东地区含砾花岗岩残积土的细观剪切特性研究. 水利与建筑工程学报. 2022(02): 48-53+191 .
    10. 吴尚杰. 粉土填料细观剪切特性的颗粒离散元数值模拟研究. 水利与建筑工程学报. 2022(03): 129-133+175 .
    11. 李泽闯,刘志斌,程培峰,张昊,蔡启源. 基于颗粒流方法的含粗粒滑带土宏细观力学特性. 辽宁工程技术大学学报(自然科学版). 2022(02): 121-129 .
    12. 胡峰,李志清,刘琪,胡瑞林. 土石混合体的剪应力波动和跌落行为机制. 水文地质工程地质. 2021(03): 90-101 .
    13. 杨忠平,李进,蒋源文,胡元鑫,赵亚龙. 含石率对土石混合体–基岩界面剪切力学特性的影响. 岩土工程学报. 2021(08): 1443-1452 . 本站查看
    14. 金扬国. 交通荷载下碎石土回填路基沉降分析. 安徽建筑. 2021(11): 143-144 .
    15. 杨忠平,蒋源文,李诗琪,李进,胡元鑫. 土石混合体—基岩界面剪切力学特性试验研究. 岩土工程学报. 2020(10): 1947-1954 . 本站查看
    16. 俞隽,孙洪浩,郑霄阳. 块石含量对土石混合体剪切力学特性的影响. 南通大学学报(自然科学版). 2020(03): 83-89 .
    17. 董辉,朱宪明,陈立,罗正东,蒋秀姿. 基于阻抗谱的土石体电阻相似性孔隙特征研究. 仪器仪表学报. 2020(11): 119-128 .

    Other cited types(26)

Catalog

    Article views (186) PDF downloads (117) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return