Citation: | SU Si-yang, KONG De-qiong, WU Lei-ye, ZHU Bin. Development and validation of a modified moving boundary model to simulate liquefaction-solidification behaviors of seabed under wave loading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1156-1165. DOI: 10.11779/CJGE202206021 |
[1] |
BJERRUM L. Geotechnical problems involved in foundations of structures in the North Sea[J]. Géotechnique, 1973, 23(3): 319–358. doi: 10.1680/geot.1973.23.3.319
|
[2] |
ISHIHARA K, YAMAZAKI A. Analysis of wave-induced liquefaction in seabed deposits of sand[J]. Soils and Foundations, 1984, 24(3): 85–100. doi: 10.3208/sandf1972.24.3_85
|
[3] |
杨少丽, 沈渭铨, 杨作升. 波浪作用下海底粉砂液化的机理分析[J]. 岩土工程学报, 1995(4): 28–37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC504.003.htm
YANG Shao-li, SHEN Wei-quan, YANG Zuo-sheng. The mechanism analysis of seafloor silt liquefaction under wave loads[J]. Chinese Journal of Geotechnical Engineering, 1995(4): 28–37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC504.003.htm
|
[4] |
来向华, 陈云敏. 海床—管道原位检测及水动力响应分析[D]. 杭州: 浙江大学, 2009.
LAI Xiang-hua, CHEN Yun-min. Reasearch on In-Situ Inspection and Hydrodynamic Analysis of Seabed-Pipeline System[D]. Hangzhou: Zhejiang University, 2009. (in Chinese)
|
[5] |
MIYAMOTO J, SASSA S, SEKIGUCHI H. Progressive solidification of a liquefied sand layer during continued wave loading[J]. Géotechnique, 2004, 54(10): 617–629. doi: 10.1680/geot.2004.54.10.617
|
[6] |
SUMER B M, HATIPOGLU F, FREDSØE J, et al. The sequence of sediment behaviour during wave-induced liquefaction[J]. Sedimentology, 2006, 53(3): 611–629. doi: 10.1111/j.1365-3091.2006.00763.x
|
[7] |
贾永刚, 史文君, 单红仙, 等. 黄河口粉土强度丧失与恢复过程现场振动试验研究[J]. 岩土力学, 2005, 26(3): 351–358. doi: 10.3969/j.issn.1000-7598.2005.03.004
JIA Yong-gang, SHI Wen-jun, SHAN Hong-xian, et al. In-situ test study on silt strength's loss and recovery due to vibration load in the Yellow River mouth[J]. Rock and Soil Mechanics, 2005, 26(3): 351–358. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.03.004
|
[8] |
栾茂田, 张晨明, 王栋, 等. 波浪作用下海床孔隙水压力发展过程与液化的数值分析[J]. 水利学报, 2004(2): 94–100. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200402016.htm
LUAN Mao-tian, ZHANG Chen-ming, WANG Dong, et al. Numerical analysis of residual pore water pressure development and evaluation of liquefaction potential of seabed under wave loading[J]. Journal of Hydraulic Engineering, 2004(2): 94–100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200402016.htm
|
[9] |
YE J H, JENG D, WANG R, et al. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction[J]. Journal of Fluids and Structures, 2013, 42: 333–357. doi: 10.1016/j.jfluidstructs.2013.04.008
|
[10] |
王良民, 叶剑红, 朱长歧. 近海欠密实砂质海床内波致渐进液化特征研究[J]. 岩土力学, 2015, 36(12): 3583–3588. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512031.htm
WANG Liang-min, YE Jian-hong, ZHU Chang-qi. Investigation on the wave-induced progressive liquefaction of offshore loosely deposited sandy seabed[J]. Rock and Soil Mechanics, 2015, 36(12): 3583–3588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512031.htm
|
[11] |
ZHAO H Y, JENG D S, GUO Z, et al. Two-dimensional model for pore pressure accumulations in the vicinity of a buried pipeline[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4): 042001. doi: 10.1115/1.4027955
|
[12] |
SASSA S, SEKIGUCHI H, MIYAMOTO J. Analysis of progressive liquefaction as a moving-boundary problem[J]. Géotechnique, 2001, 51(10): 847–857. doi: 10.1680/geot.2001.51.10.847
|
[13] |
DALRYMPLE R A, LIU P L-F. Waves over soft muds: a two-layer fluid model[J]. Journal of Physical Oceanography, 1978, 8(6): 1121–1131. doi: 10.1175/1520-0485(1978)008<1121:WOSMAT>2.0.CO;2
|
[14] |
LIU Z, JENG D S, CHAN A H C, et al. Wave-induced progressive liquefaction in a poro-elastoplastic seabed: a two-layered model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(5): 591–610. doi: 10.1002/nag.734
|
[15] |
HSU J R C, JENG D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785–807. doi: 10.1002/nag.1610181104
|
[16] |
刘占阁. 波浪作用下海床累积孔隙水压力响应与液化分析[D]. 大连: 大连理工大学, 2008.
LIU Zhan-ge. Study on Wave-Induced Response of Progressive Pore Pressure and Liquefaction in Seabed[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
|
[17] |
WU L Y, KONG D Q, ZHU B, et al. Centrifuge modelling of wave-induced seabed response in clay[J]. Géotechnique, doi: https://doi.org/10.1680/jeot.21.00105.
|
[18] |
吴雷晔. 波浪作用下地基演变及管土相互作用模型试验与数值分析[D]. 杭州: 浙江大学, 2021.
WU Lei-ye. Experimental and Numerical Study on Seabed Response and Pipe-Soil Interaction under Waves[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
|
[19] |
鲁双. 海积超软土强度与流变特性试验研究[D]. 大连: 大连理工大学, 2017.
LU Shuang. The Experimental Study on the Strength and Rheological Properties of Ultra-Soft Marine Soil[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
|
[1] | LIAO Raoping, CHEN Yonggui, LIU Cong, YE Weimin, WU Dongbei, WANG Qiong. Research advances in chemical interaction mechanism between highly compacted bentonite and pore solution[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1089-1098. DOI: 10.11779/CJGE20240208 |
[2] | LI Yucheng, CHEN Yonggui, LIU Li, YE Weimin, WANG Qiong. Advances in studies of multi-scale swelling pressure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2457-2464. DOI: 10.11779/CJGE20230293 |
[3] | MA Jing, CHEN Yonggui, LIU Cong, YE Weimin, WANG Qiong. Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. DOI: 10.11779/CJGE20220911 |
[4] | HE Jia, HUANG Xin, YAN Fengyuan, WANG Hao. Research advances in bio-inspired geotechnics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1200-1211. DOI: 10.11779/CJGE20220254 |
[5] | LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001 |
[6] | CHEN Yong-gui, CAI Ye-qing, YE Wei-min, CUI Yu-jun, CHEN Bao. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2149-2158. DOI: 10.11779/CJGE202112001 |
[7] | CAI Ye-qing, CHEN Yong-gui, YE Wei-min, CUI Yu-jun, CHEN Bao. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. DOI: 10.11779/CJGE202011004 |
[8] | ZENG Chao-feng, XUE Xiu-li, MEI Guo-xiong. A review of recent advances in permeable pipe pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 228-231. DOI: 10.11779/CJGE2017S2055 |
[9] | HE Jia, CHU Jian, LIU Han-long, GAO Yu-feng, LI Bing. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. DOI: 10.11779/CJGE201604008 |
[10] | Advances of dam construction techniques in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1678-1687. |
1. |
义扬,肖映雄,余科. 任意多边形骨料混凝土细观模型的建立与数值模拟. 山东大学学报(工学版). 2025(01): 97-107 .
![]() | |
2. |
朱艳贵. 不等向固结时混合土剪切行为的离散元分析. 工业建筑. 2024(03): 167-173 .
![]() | |
3. |
李冠鹏,陈占扬,李洪博,武海荣,黄鹏,刘子墨,杜文韬. 基于三维细观的混凝土靶板侵彻仿真研究. 河南城建学院学报. 2024(06): 48-55 .
![]() | |
4. |
王泽华,李昺,邢磊,龚文平. 基于PFC~(3D)的滑坡与建筑物相互作用过程研究. 安全与环境工程. 2023(01): 107-118+191 .
![]() | |
5. |
杨忠平,刘浩宇,李进,李绪勇,刘新荣. 土石混合料–基岩接触面剪切力学特性及剪切带变形特征研究. 岩石力学与工程学报. 2023(02): 292-306 .
![]() | |
6. |
朱艳贵. 考虑粗颗粒真实形状的混合土不排水剪切特性离散元研究. 公路交通科技. 2023(02): 28-35 .
![]() | |
7. |
茹晓军. 考虑细观特征的土石混合体边坡破坏机制分析. 铁道建筑技术. 2023(04): 1-4+10 .
![]() | |
8. |
贾聿颉,李冬冬. 基于筛分试验的土石混合体三维数值建模方法研究. 华北水利水电大学学报(自然科学版). 2023(02): 97-103 .
![]() | |
9. |
张宏虎,白伟,孙明祥,邓涛. 闽东地区含砾花岗岩残积土的细观剪切特性研究. 水利与建筑工程学报. 2022(02): 48-53+191 .
![]() | |
10. |
吴尚杰. 粉土填料细观剪切特性的颗粒离散元数值模拟研究. 水利与建筑工程学报. 2022(03): 129-133+175 .
![]() | |
11. |
李泽闯,刘志斌,程培峰,张昊,蔡启源. 基于颗粒流方法的含粗粒滑带土宏细观力学特性. 辽宁工程技术大学学报(自然科学版). 2022(02): 121-129 .
![]() | |
12. |
胡峰,李志清,刘琪,胡瑞林. 土石混合体的剪应力波动和跌落行为机制. 水文地质工程地质. 2021(03): 90-101 .
![]() | |
13. |
杨忠平,李进,蒋源文,胡元鑫,赵亚龙. 含石率对土石混合体–基岩界面剪切力学特性的影响. 岩土工程学报. 2021(08): 1443-1452 .
![]() | |
14. |
金扬国. 交通荷载下碎石土回填路基沉降分析. 安徽建筑. 2021(11): 143-144 .
![]() | |
15. |
杨忠平,蒋源文,李诗琪,李进,胡元鑫. 土石混合体—基岩界面剪切力学特性试验研究. 岩土工程学报. 2020(10): 1947-1954 .
![]() | |
16. |
俞隽,孙洪浩,郑霄阳. 块石含量对土石混合体剪切力学特性的影响. 南通大学学报(自然科学版). 2020(03): 83-89 .
![]() | |
17. |
董辉,朱宪明,陈立,罗正东,蒋秀姿. 基于阻抗谱的土石体电阻相似性孔隙特征研究. 仪器仪表学报. 2020(11): 119-128 .
![]() |