Citation: | LIAO Raoping, CHEN Yonggui, LIU Cong, YE Weimin, WU Dongbei, WANG Qiong. Research advances in chemical interaction mechanism between highly compacted bentonite and pore solution[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1089-1098. DOI: 10.11779/CJGE20240208 |
[1] |
崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842-847. doi: 10.3321/j.issn:1000-6915.2006.04.019
CUI Yujun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842-847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019
|
[2] |
GAUCHER E C, BLANC P. Cement/clay interactions: a review: experiments, natural analogues, and modeling[J]. Waste Management, 2006, 26(7): 776-788. doi: 10.1016/j.wasman.2006.01.027
|
[3] |
张虎元, 李小雅, 童艳梅, 等. 高庙子膨润土在模拟水泥浸出液中的黏土矿物相变[J]. 硅酸盐学报, 2023, 51(1): 215-225.
ZHANG Huyuan, LI Xiaoya, TONG Yanmei, et al. Clay phase change of gaomiaozi bentonite in simulated cement solutions[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 215-225. (in Chinese)
|
[4] |
KARNLAND O, OLSSON S, NILSSON U, et al. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions[J]. Physics and Chemistry of the Earth, 2007, 32(1/2/3/4/5/6/7): 275-286.
|
[5] |
BAUER A, BERGER G. Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80℃[J]. Applied Geochemistry, 1998, 13(7): 905-916. doi: 10.1016/S0883-2927(98)00018-3
|
[6] |
RIMSTIDT J D. Rate equations for sodium catalyzed quartz dissolution[J]. Geochimica et Cosmochimica Acta, 2015, 167: 195-204. doi: 10.1016/j.gca.2015.07.030
|
[7] |
ROZALEN M, HUERTAS F J, BRADY P V. Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution[J]. Geochimica et Cosmochimica Acta, 2009, 73(13): 3752-3766. doi: 10.1016/j.gca.2009.03.026
|
[8] |
RAMı́REZ S, CUEVAS J, VIGIL R, et al. Hydrothermal alteration of "La Serrata" bentonite (Almeria, Spain) by alkaline solutions[J]. Applied Clay Science, 2002, 21(5/6): 257-269.
|
[9] |
FERNÁNDEZ R, CUEVAS J, SÁNCHEZ L, et al. Reactivity of the cement–bentonite interface with alkaline solutions using transport cells[J]. Applied Geochemistry, 2006, 21(6): 977-992. doi: 10.1016/j.apgeochem.2006.02.016
|
[10] |
CHESHIRE M C, CAPORUSCIO F A, JOVÉ COLÓN C F, et al. Fe-saponite growth on low-carbon and stainless steel in hydrothermal-bentonite experiments[J]. Journal of Nuclear Materials, 2018, 511: 353-366. doi: 10.1016/j.jnucmat.2018.09.038
|
[11] |
SAVAGE D, WALKER C, ARTHUR R, et al. Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals[J]. Physics and Chemistry of the Earth, 2007, 32(1/2/3/4/5/6/7): 287-297.
|
[12] |
SUN Z, CHEN Y G, CUI Y J, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: the Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66-74. doi: 10.1016/j.enggeo.2018.08.002
|
[13] |
CUEVAS J, RUIZ A I, FERNÁNDEZ R, et al. Authigenic clay minerals from interface reactions of concrete-clay engineered barriers: a new perspective on Mg-clays Formation in alkaline environments[J]. Minerals, 2018, 8(9): 362. doi: 10.3390/min8090362
|
[14] |
PEKALA M, WERSIN P, PASTINA B, et al. Potential impact of cementitious leachates on the buffer porewater chemistry in the Finnish repository for spent nuclear fuel-A reactive transport modelling assessment[J]. Applied Geochemistry, 2021, 131: 105045. doi: 10.1016/j.apgeochem.2021.105045
|
[15] |
MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: Wiley, 2005.
|
[16] |
GARCÍA-ROMERO E, LORENZO A, GARCÍA-VICENTE A, et al. On the structural formula of smectites: a review and new data on the influence of exchangeable cations[J]. Journal of Applied Crystallography, 2021, 54(Pt 1): 251-262.
|
[17] |
CHEN Y G, DONG X X, ZHANG X D, et al. Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite[J]. Applied Clay Science, 2018, 166: 318-326. doi: 10.1016/j.clay.2018.10.001
|
[18] |
SUN D A, ZHANG L, LI J, et al. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution[J]. Applied Clay Science, 2015, 105/106: 207-216. doi: 10.1016/j.clay.2014.12.032
|
[19] |
KARNLAND O, OLSSON S, NILSSON U. Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials[R]. Stockholm: Svensk Kärnbränslehantering Ab, 2006.
|
[20] |
LEE J O, LIM J G, KANG I M, et al. Swelling pressures of compacted Ca-bentonite[J]. Engineering Geology, 2012, 129/130: 20-26. doi: 10.1016/j.enggeo.2012.01.005
|
[21] |
VILLAR M V, IGLESIAS R J, GUTIÉRREZ-ÁLVAREZ C, et al. Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions[J]. Applied Clay Science, 2018, 160: 49-57. doi: 10.1016/j.clay.2017.12.045
|
[22] |
WANG Q. Hydro-Mechanical Behaviour of Bentonite- Basedmaterials Used for High-Level Radioactive Waste Disposal[D]. Paris: Ecole Des Ponts Paris Tech, 2012.
|
[23] |
马婧, 陈永贵, 刘聪, 等. 化学作用下压实膨润土膨胀力响应机制研究进展[J]. 岩土工程学报: 1-10.
MA Jing, CHEN Yong-gui, LIU Cong, 等. Research progress on the swelling pressures mechanisms of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering: 1-10. (in Chinese)
|
[24] |
KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46(2): 177-189. doi: 10.1139/T08-120
|
[25] |
KIM S S, BAIK M H, KANG K C. Solubility of neptunium oxide in the KURT (KAERI Underground Research Tunnel) groundwater[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 280(3): 577-583. doi: 10.1007/s10967-009-7481-y
|
[26] |
童艳梅, 张虎元, 周光平, 等. 高庙子膨润土中蒙脱石碱性溶蚀的矿物学证据[J]. 岩土力学, 2022, 43(11): 2973-2982.
TONG Yanmei, ZHANG Huyuan, ZHOU Guangping, et al. Mineralogical evidence of alkaline corrosion of montmorillonite in GMZ bentonite[J]. Rock and Soil Mechanics, 2022, 43(11): 2973-2982. (in Chinese)
|
[27] |
陈宝, 张会新, 陈萍. 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35(1): 181-186. http://cge.nhri.cn/article/id/14929
CHEN Bao, ZHANG Huixin, CHEN Ping. Erosion effect of hyper-alkaline solution on Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 181-186. (in Chinese) http://cge.nhri.cn/article/id/14929
|
[28] |
KAUFHOLD S, DOHRMANN R, SANDÉN T, et al. Mineralogical investigations of the first package of the alternative buffer material test–I. Alteration of bentonites[J]. Clay Minerals, 2013, 48(2): 199-213. doi: 10.1180/claymin.2013.048.2.04
|
[29] |
KAUFHOLD S, DOHRMANN R, WALLIS I, et al. Chemical and mineralogical reactions of bentonites in geotechnical barriers at elevated temperatures: review of experimental evidence and modelling progress[J]. Clay Minerals, 2023, 58(3): 280-300. doi: 10.1180/clm.2023.26
|
[30] |
曾召田, 张瀚彬, 吕海波, 等. 高温强碱条件下膨润土物理性能的时效性[J]. 土木与环境工程学报(中英文): 1-8.
ZENG Zhaotian, ZHANG Hanbin, LÜ Haibo, et al. Aging effect on physical properties of bentonite under high temperature-strong alkaline conditions[J]. Journal of Civil and Environmental Engineering: 1-8. (in Chinese)
|
[31] |
郭招群. 碱—热耦合作用下膨润土水力演化特征研究[D]. 绵阳: 西南科技大学, 2018.
GUO (QIAO Zhaoqun. Study on Hydraulic Evolution Characteristics of Bentonite under Alkali-Heat Coupling[D]. Mianyang: Southwest University of Science and Technology, 2018. (in Chinese)
|
[32] |
陈龙. 复杂化学环境下膨润土膨胀变形研究[D]. 绵阳: 西南科技大学, 2021.
CHEN Long. Study on Swelling Deformation of Bentonite in Complex Chemical Environment[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese)
|
[33] |
YE W M, ZHENG Z J, CHEN B, et al. Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Applied Clay Science, 2014, 101: 192-198. doi: 10.1016/j.clay.2014.08.002
|
[34] |
陈宝, 张会新, 陈萍. 高碱溶液入渗对GMZ膨润土微观孔隙结构的影响[J]. 浙江大学学报(工学版), 2013, 47(4): 602-608.
CHEN Bao, ZHANG Huixin, CHEN Ping. Influence of hyper-alkaline solution infiltration on microscopic pore structure of compacted GMZ bentonite[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(4): 602-608. (in Chinese)
|
[35] |
CHEN B, GUO J X, ZHANG H X. Alteration of compacted GMZ bentonite by infiltration of alkaline solution[J]. Clay Minerals, 2016, 51(2): 237-247. doi: 10.1180/claymin.2016.051.2.10
|
[36] |
JORDI Cama, JIWCHAR Ganor. Natural and Engineered Clay Barriers[M]. Amsterdam: Elsevier, 2015: 101-153.
|
[37] |
CHOI J H, KIMOTO K, ICHIKAWA Y. Quartz dissolution experiments at various pH, temperature and stress conditions: CLSM and ICP-AES investigations[J]. Environmental Earth Sciences, 2012, 66(8): 2431-2440. doi: 10.1007/s12665-011-1467-0
|
[38] |
UETA S, SATOH H, KATO H, et al. Interlayer dissolution of montmorillonite observed by internal refraction interferometry[J]. Journal of Nuclear Science and Technology, 2016, 53(2): 184-191. doi: 10.1080/00223131.2015.1029556
|
[39] |
KÖHLER S J, DUFAUD F, OELKERS E H. An experimental study of illite dissolution kinetics as a function of ph from 1.4 to 12.4 and temperature from 5 to 50℃[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3583-3594. doi: 10.1016/S0016-7037(03)00163-7
|
[40] |
LOWSON R T, BROWN P L, COMARMOND M C J, et al. The kinetics of chlorite dissolution[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1431-1447. doi: 10.1016/j.gca.2006.12.008
|
[41] |
METZ V, AMRAM K, GANOR J. Stoichiometry of smectite dissolution reaction[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1755-1772. doi: 10.1016/j.gca.2004.09.027
|
[42] |
AMRAM K, GANOR J. The combined effect of pH and temperature on smectite dissolution rate under acidic conditions[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2535-2546. doi: 10.1016/j.gca.2004.10.001
|
[43] |
HUERTAS F J, CABALLERO E, JIMÉNEZ DE CISNEROS C, et al. Kinetics of montmorillonite dissolution in granitic solutions[J]. Applied Geochemistry, 2001, 16(4): 397-407. doi: 10.1016/S0883-2927(00)00049-4
|
[44] |
NIGHTINGALE E R Jr. Phenomenological theory of ion solvation. effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. doi: 10.1021/j150579a011
|
[45] |
方邺森. 黏土矿物的分类[J]. 海洋地质与第四纪地质, 1985(2): 125-127.
FANG Yesen. Classification of clay minerals[J]. Marine Geology & Quaternary Geology, 1985(2): 125-127. (in Chinese)
|
[46] |
FERNÁNDEZ R, CUEVAS J, MÄDER U K. Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier[J]. Cement and Concrete Research, 2010, 40(8): 1255-1264. doi: 10.1016/j.cemconres.2009.09.011
|
[47] |
BAUER A, VELDE B. Smectite transformation in high molar KOH solutions[J]. Clay Minerals, 1999, 34(2): 259-273. doi: 10.1180/000985599546226
|
[48] |
VAN DE KAMP P C. Smectite-illite-muscovite transformations, quartz dissolution, and Silica release in shales[J]. Clays and Clay Minerals, 2008, 56(1): 66-81. doi: 10.1346/CCMN.2008.0560106
|
[49] |
张明, 谢敬礼. 高放处置罐铁释放诱发膨润土矿物相变研究进展[J]. 岩石矿物学杂志, 2021, 40(4): 778-785. doi: 10.3969/j.issn.1000-6524.2021.04.009
ZHANG Ming, XIE Jingli. A review on the study of mineral phase transformation of bentonite induced by iron release in the high-level radioactive waste repository[J]. Acta Petrologica et Mineralogica, 2021, 40(4): 778-785. (in Chinese) doi: 10.3969/j.issn.1000-6524.2021.04.009
|
[50] |
OSACKý M, ŠUCHA V, CZíMEROVá A, et al. Reaction of smectites with iron in aerobic conditions at 75℃[J]. Applied Clay Science, 2013, 72: 26-36. doi: 10.1016/j.clay.2012.12.010
|
[51] |
WYPYCH F, FREITAS R A D. Developments in Clay Science[M]. Amsterdam: Elsevier, 2022: 3-35.
|
[52] |
HE X, PAN Y, CASERES L, et al. Assessment of Aging Mechanisms for Concrete Exposed to Outdoor Air and Groundwater or Soil in Spent Nuclear Fuel Dry Storage Systems[R]. Houston: Nace International, 2018.
|