• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIAO Raoping, CHEN Yonggui, LIU Cong, YE Weimin, WU Dongbei, WANG Qiong. Research advances in chemical interaction mechanism between highly compacted bentonite and pore solution[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1089-1098. DOI: 10.11779/CJGE20240208
Citation: LIAO Raoping, CHEN Yonggui, LIU Cong, YE Weimin, WU Dongbei, WANG Qiong. Research advances in chemical interaction mechanism between highly compacted bentonite and pore solution[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1089-1098. DOI: 10.11779/CJGE20240208

Research advances in chemical interaction mechanism between highly compacted bentonite and pore solution

More Information
  • Received Date: February 03, 2024
  • Available Online: June 05, 2024
  • The highly compacted bentonite, as the preferred buffer/backfill materials, is inevitably subjected to chemical erosion in the T-H-M-C environment of the high-level radioactive waste repositories, leading to dissolution or phase transition of smectite, and diminishing the buffer performance. The latest researches on the chemical mechanism are summarized on the basis of reviewing the effects of the solution on the buffer performance of the compacted bentonite. The analysis indicates that the dissolution or phase transformation of layered smectite into a framework mineral is the key factor leading to the attenuation of the specific surface area, density, water retention, swelling and permeation resistance of bentonite. The chemical interaction mechanisms include mineral phase transformation and chemical cementation. The phase transformation of minerals is influenced by chemical composition, pH, temperature and catalytic ions of the pore solution, and can be divided into isomorphous phase transformation and recrystallization. The chemical cementation associates with saline precipitate filling and the cementation of aluminosilicate gelation during wetting-drying cycles. The dissolution rate of minerals in bentonite is influenced by both the intrinsic factors like surface area and stress, and the extrinsic factors including pore solution. Further clarification of chemical reaction parameters, cementation effects and multi-field coupling reaction model within the bentonite reaction system remains the focus of further researches on the chemical evolution of bentonite in the future.
  • [1]
    崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842-847. doi: 10.3321/j.issn:1000-6915.2006.04.019

    CUI Yujun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842-847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019
    [2]
    GAUCHER E C, BLANC P. Cement/clay interactions: a review: experiments, natural analogues, and modeling[J]. Waste Management, 2006, 26(7): 776-788. doi: 10.1016/j.wasman.2006.01.027
    [3]
    张虎元, 李小雅, 童艳梅, 等. 高庙子膨润土在模拟水泥浸出液中的黏土矿物相变[J]. 硅酸盐学报, 2023, 51(1): 215-225.

    ZHANG Huyuan, LI Xiaoya, TONG Yanmei, et al. Clay phase change of gaomiaozi bentonite in simulated cement solutions[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 215-225. (in Chinese)
    [4]
    KARNLAND O, OLSSON S, NILSSON U, et al. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions[J]. Physics and Chemistry of the Earth, 2007, 32(1/2/3/4/5/6/7): 275-286.
    [5]
    BAUER A, BERGER G. Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80℃[J]. Applied Geochemistry, 1998, 13(7): 905-916. doi: 10.1016/S0883-2927(98)00018-3
    [6]
    RIMSTIDT J D. Rate equations for sodium catalyzed quartz dissolution[J]. Geochimica et Cosmochimica Acta, 2015, 167: 195-204. doi: 10.1016/j.gca.2015.07.030
    [7]
    ROZALEN M, HUERTAS F J, BRADY P V. Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution[J]. Geochimica et Cosmochimica Acta, 2009, 73(13): 3752-3766. doi: 10.1016/j.gca.2009.03.026
    [8]
    RAMı́REZ S, CUEVAS J, VIGIL R, et al. Hydrothermal alteration of "La Serrata" bentonite (Almeria, Spain) by alkaline solutions[J]. Applied Clay Science, 2002, 21(5/6): 257-269.
    [9]
    FERNÁNDEZ R, CUEVAS J, SÁNCHEZ L, et al. Reactivity of the cement–bentonite interface with alkaline solutions using transport cells[J]. Applied Geochemistry, 2006, 21(6): 977-992. doi: 10.1016/j.apgeochem.2006.02.016
    [10]
    CHESHIRE M C, CAPORUSCIO F A, JOVÉ COLÓN C F, et al. Fe-saponite growth on low-carbon and stainless steel in hydrothermal-bentonite experiments[J]. Journal of Nuclear Materials, 2018, 511: 353-366. doi: 10.1016/j.jnucmat.2018.09.038
    [11]
    SAVAGE D, WALKER C, ARTHUR R, et al. Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals[J]. Physics and Chemistry of the Earth, 2007, 32(1/2/3/4/5/6/7): 287-297.
    [12]
    SUN Z, CHEN Y G, CUI Y J, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: the Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66-74. doi: 10.1016/j.enggeo.2018.08.002
    [13]
    CUEVAS J, RUIZ A I, FERNÁNDEZ R, et al. Authigenic clay minerals from interface reactions of concrete-clay engineered barriers: a new perspective on Mg-clays Formation in alkaline environments[J]. Minerals, 2018, 8(9): 362. doi: 10.3390/min8090362
    [14]
    PEKALA M, WERSIN P, PASTINA B, et al. Potential impact of cementitious leachates on the buffer porewater chemistry in the Finnish repository for spent nuclear fuel-A reactive transport modelling assessment[J]. Applied Geochemistry, 2021, 131: 105045. doi: 10.1016/j.apgeochem.2021.105045
    [15]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: Wiley, 2005.
    [16]
    GARCÍA-ROMERO E, LORENZO A, GARCÍA-VICENTE A, et al. On the structural formula of smectites: a review and new data on the influence of exchangeable cations[J]. Journal of Applied Crystallography, 2021, 54(Pt 1): 251-262.
    [17]
    CHEN Y G, DONG X X, ZHANG X D, et al. Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite[J]. Applied Clay Science, 2018, 166: 318-326. doi: 10.1016/j.clay.2018.10.001
    [18]
    SUN D A, ZHANG L, LI J, et al. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution[J]. Applied Clay Science, 2015, 105/106: 207-216. doi: 10.1016/j.clay.2014.12.032
    [19]
    KARNLAND O, OLSSON S, NILSSON U. Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials[R]. Stockholm: Svensk Kärnbränslehantering Ab, 2006.
    [20]
    LEE J O, LIM J G, KANG I M, et al. Swelling pressures of compacted Ca-bentonite[J]. Engineering Geology, 2012, 129/130: 20-26. doi: 10.1016/j.enggeo.2012.01.005
    [21]
    VILLAR M V, IGLESIAS R J, GUTIÉRREZ-ÁLVAREZ C, et al. Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions[J]. Applied Clay Science, 2018, 160: 49-57. doi: 10.1016/j.clay.2017.12.045
    [22]
    WANG Q. Hydro-Mechanical Behaviour of Bentonite- Basedmaterials Used for High-Level Radioactive Waste Disposal[D]. Paris: Ecole Des Ponts Paris Tech, 2012.
    [23]
    马婧, 陈永贵, 刘聪, 等. 化学作用下压实膨润土膨胀力响应机制研究进展[J]. 岩土工程学报: 1-10.

    MA Jing, CHEN Yong-gui, LIU Cong, 等. Research progress on the swelling pressures mechanisms of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering: 1-10. (in Chinese)
    [24]
    KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46(2): 177-189. doi: 10.1139/T08-120
    [25]
    KIM S S, BAIK M H, KANG K C. Solubility of neptunium oxide in the KURT (KAERI Underground Research Tunnel) groundwater[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 280(3): 577-583. doi: 10.1007/s10967-009-7481-y
    [26]
    童艳梅, 张虎元, 周光平, 等. 高庙子膨润土中蒙脱石碱性溶蚀的矿物学证据[J]. 岩土力学, 2022, 43(11): 2973-2982.

    TONG Yanmei, ZHANG Huyuan, ZHOU Guangping, et al. Mineralogical evidence of alkaline corrosion of montmorillonite in GMZ bentonite[J]. Rock and Soil Mechanics, 2022, 43(11): 2973-2982. (in Chinese)
    [27]
    陈宝, 张会新, 陈萍. 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35(1): 181-186. http://cge.nhri.cn/article/id/14929

    CHEN Bao, ZHANG Huixin, CHEN Ping. Erosion effect of hyper-alkaline solution on Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 181-186. (in Chinese) http://cge.nhri.cn/article/id/14929
    [28]
    KAUFHOLD S, DOHRMANN R, SANDÉN T, et al. Mineralogical investigations of the first package of the alternative buffer material test–I. Alteration of bentonites[J]. Clay Minerals, 2013, 48(2): 199-213. doi: 10.1180/claymin.2013.048.2.04
    [29]
    KAUFHOLD S, DOHRMANN R, WALLIS I, et al. Chemical and mineralogical reactions of bentonites in geotechnical barriers at elevated temperatures: review of experimental evidence and modelling progress[J]. Clay Minerals, 2023, 58(3): 280-300. doi: 10.1180/clm.2023.26
    [30]
    曾召田, 张瀚彬, 吕海波, 等. 高温强碱条件下膨润土物理性能的时效性[J]. 土木与环境工程学报(中英文): 1-8.

    ZENG Zhaotian, ZHANG Hanbin, LÜ Haibo, et al. Aging effect on physical properties of bentonite under high temperature-strong alkaline conditions[J]. Journal of Civil and Environmental Engineering: 1-8. (in Chinese)
    [31]
    郭招群. 碱—热耦合作用下膨润土水力演化特征研究[D]. 绵阳: 西南科技大学, 2018.

    GUO (QIAO Zhaoqun. Study on Hydraulic Evolution Characteristics of Bentonite under Alkali-Heat Coupling[D]. Mianyang: Southwest University of Science and Technology, 2018. (in Chinese)
    [32]
    陈龙. 复杂化学环境下膨润土膨胀变形研究[D]. 绵阳: 西南科技大学, 2021.

    CHEN Long. Study on Swelling Deformation of Bentonite in Complex Chemical Environment[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese)
    [33]
    YE W M, ZHENG Z J, CHEN B, et al. Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Applied Clay Science, 2014, 101: 192-198. doi: 10.1016/j.clay.2014.08.002
    [34]
    陈宝, 张会新, 陈萍. 高碱溶液入渗对GMZ膨润土微观孔隙结构的影响[J]. 浙江大学学报(工学版), 2013, 47(4): 602-608.

    CHEN Bao, ZHANG Huixin, CHEN Ping. Influence of hyper-alkaline solution infiltration on microscopic pore structure of compacted GMZ bentonite[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(4): 602-608. (in Chinese)
    [35]
    CHEN B, GUO J X, ZHANG H X. Alteration of compacted GMZ bentonite by infiltration of alkaline solution[J]. Clay Minerals, 2016, 51(2): 237-247. doi: 10.1180/claymin.2016.051.2.10
    [36]
    JORDI Cama, JIWCHAR Ganor. Natural and Engineered Clay Barriers[M]. Amsterdam: Elsevier, 2015: 101-153.
    [37]
    CHOI J H, KIMOTO K, ICHIKAWA Y. Quartz dissolution experiments at various pH, temperature and stress conditions: CLSM and ICP-AES investigations[J]. Environmental Earth Sciences, 2012, 66(8): 2431-2440. doi: 10.1007/s12665-011-1467-0
    [38]
    UETA S, SATOH H, KATO H, et al. Interlayer dissolution of montmorillonite observed by internal refraction interferometry[J]. Journal of Nuclear Science and Technology, 2016, 53(2): 184-191. doi: 10.1080/00223131.2015.1029556
    [39]
    KÖHLER S J, DUFAUD F, OELKERS E H. An experimental study of illite dissolution kinetics as a function of ph from 1.4 to 12.4 and temperature from 5 to 50℃[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3583-3594. doi: 10.1016/S0016-7037(03)00163-7
    [40]
    LOWSON R T, BROWN P L, COMARMOND M C J, et al. The kinetics of chlorite dissolution[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1431-1447. doi: 10.1016/j.gca.2006.12.008
    [41]
    METZ V, AMRAM K, GANOR J. Stoichiometry of smectite dissolution reaction[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1755-1772. doi: 10.1016/j.gca.2004.09.027
    [42]
    AMRAM K, GANOR J. The combined effect of pH and temperature on smectite dissolution rate under acidic conditions[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2535-2546. doi: 10.1016/j.gca.2004.10.001
    [43]
    HUERTAS F J, CABALLERO E, JIMÉNEZ DE CISNEROS C, et al. Kinetics of montmorillonite dissolution in granitic solutions[J]. Applied Geochemistry, 2001, 16(4): 397-407. doi: 10.1016/S0883-2927(00)00049-4
    [44]
    NIGHTINGALE E R Jr. Phenomenological theory of ion solvation. effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. doi: 10.1021/j150579a011
    [45]
    方邺森. 黏土矿物的分类[J]. 海洋地质与第四纪地质, 1985(2): 125-127.

    FANG Yesen. Classification of clay minerals[J]. Marine Geology & Quaternary Geology, 1985(2): 125-127. (in Chinese)
    [46]
    FERNÁNDEZ R, CUEVAS J, MÄDER U K. Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier[J]. Cement and Concrete Research, 2010, 40(8): 1255-1264. doi: 10.1016/j.cemconres.2009.09.011
    [47]
    BAUER A, VELDE B. Smectite transformation in high molar KOH solutions[J]. Clay Minerals, 1999, 34(2): 259-273. doi: 10.1180/000985599546226
    [48]
    VAN DE KAMP P C. Smectite-illite-muscovite transformations, quartz dissolution, and Silica release in shales[J]. Clays and Clay Minerals, 2008, 56(1): 66-81. doi: 10.1346/CCMN.2008.0560106
    [49]
    张明, 谢敬礼. 高放处置罐铁释放诱发膨润土矿物相变研究进展[J]. 岩石矿物学杂志, 2021, 40(4): 778-785. doi: 10.3969/j.issn.1000-6524.2021.04.009

    ZHANG Ming, XIE Jingli. A review on the study of mineral phase transformation of bentonite induced by iron release in the high-level radioactive waste repository[J]. Acta Petrologica et Mineralogica, 2021, 40(4): 778-785. (in Chinese) doi: 10.3969/j.issn.1000-6524.2021.04.009
    [50]
    OSACKý M, ŠUCHA V, CZíMEROVá A, et al. Reaction of smectites with iron in aerobic conditions at 75℃[J]. Applied Clay Science, 2013, 72: 26-36. doi: 10.1016/j.clay.2012.12.010
    [51]
    WYPYCH F, FREITAS R A D. Developments in Clay Science[M]. Amsterdam: Elsevier, 2022: 3-35.
    [52]
    HE X, PAN Y, CASERES L, et al. Assessment of Aging Mechanisms for Concrete Exposed to Outdoor Air and Groundwater or Soil in Spent Nuclear Fuel Dry Storage Systems[R]. Houston: Nace International, 2018.

Catalog

    Article views (483) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return