• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
Citation: LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001

Advances in studies on pore structure of highly compacted bentonite

More Information
  • Received Date: May 10, 2021
  • Available Online: September 22, 2022
  • Based on the detailed description of pore structure of highly compacted bentonite and approaches used to determine delimiting diameter, the evolution of pore structure under the near-field environment in repository and its influence on hydraulic behavior of the bentonite are summaried. The results show that the pore structure is made up of three classes of pores, including inter-layer, inter-particle and inter-aggregate pores. When describing the constitutive model for bentonite, the pore structure is always simplified as dual pore structure consisting of macro-and micro-pores. The approaches used to determine the delimiting diameter have not reached a consensus. The evolution of pore structure is affected by the near-field conditions of deep geological repository, including temperature, seepage, stress and chemical fields. However, less studies have considered the influences of multi-field coupling on the evolution. The pore ratio and pore-size distribution cannot accurately reflect the actual pore structure, especially the pore shape and spatial distribution. Hence, there are some limitations when the pore ratio and pore-size distribution are used to explore the relationship between the pore structure and the hydraulic behavior of the bentonite. Based on the above, the following aspects should be deeply studied in the future: the optimal approach used to determine the delimiting diameter for describing the constitutive model, the evolution law of pore structure under the coupled T-H-M-C conditions, the scientific and reasonable index system reflecting the actual pore structure, and the prediction model for hydraulic characteristics based on the above index system.
  • [1]
    崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842–847. doi: 10.3321/j.issn:1000-6915.2006.04.019

    CUI Yu-jun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842–847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019
    [2]
    ROMERO E, GENS A, LLORET A. Water permeability, water retention and microstructure of unsaturated compacted Boom clay[J]. Engineering Geology, 1999, 54(1/2): 117–127.
    [3]
    DELAGE P. Microstructure features in the behaviour of engineered barriers for nuclear waste disposal[C]// Experimental Unsaturated Soil Mechanics, 2007, Berlin.
    [4]
    叶为民, 赖小玲, 刘毅, 等. 高庙子膨润土微观结构时效性试验研究[J]. 岩土工程学报, 2013, 35(12): 2255–2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm

    YE Wei-min, LAI Xiao-ling, LIU Yi, et al. Experimental study on ageing effects on microstructure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2255–2261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm
    [5]
    LAMBE T W. The structure of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1958, 84(SM2): 1–34.
    [6]
    AYLMORE L A G, QUIRK J P. Domain or turbostratic structure of clays[J]. Nature, 1960, 187(4742): 1046–1048. doi: 10.1038/1871046a0
    [7]
    OLSEN H W. Hydraulic flow through saturated clays[J]. Clays and Clay Minerals, 1960, 9(1): 131–161. doi: 10.1346/CCMN.1960.0090108
    [8]
    DIAMOND S. Pore size distributions in clays[J]. Clays and Clay Minerals, 1970, 18(1): 7–23. doi: 10.1346/CCMN.1970.0180103
    [9]
    AHMED S, LOVELL C W, DIAMOND S. Pore sizes and strength of compacted clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(4): 407–425. doi: 10.1061/AJGEB6.0000035
    [10]
    PUSCH R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology, 1979, 45(2): 153–157. doi: 10.13182/NT79-A32305
    [11]
    PUSCH R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19: 381–387. doi: 10.1139/t82-041
    [12]
    YONG R N. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance[J]. Engineering Geology, 1999, 54(1): 83–91.
    [13]
    ROMERO E, SIMMS P H. Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J]. Geotechnical and Geological Engineering, 2008, 26(6): 705–727. doi: 10.1007/s10706-008-9204-5
    [14]
    SUN H, MAŠÍN D, NAJSER J, et al. Bentonite microstructure and saturation evolution in wetting-drying cycles evaluated using ESEM, MIP and WRC measurements[J]. Géotechnique. 2019, 69(8): 713–726. doi: 10.1680/jgeot.17.P.253
    [15]
    TOMIOKA S, KOZAKI T, TAKAMATSU H, et al. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT[J]. Applied Clay Science. 2010, 47(1/2): 65–71.
    [16]
    DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21–35. doi: 10.1139/t84-003
    [17]
    LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted "FEBEX" bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8-14): 701–715. doi: 10.1016/j.pce.2006.03.002
    [18]
    AGUS S S. An Experimental Study on Hydro-Mechanical Characteristics of Compacted Bentonite-Sand Mixtures[D]. Weimar, Germany: Bauhaus-University Weimar, 2005.
    [19]
    ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1): 173–183.
    [20]
    ROMERO E, DELLA VECCHIA G, JOMMI C. An insight into the water retention properties of compacted clayey soils[J]. Géotechnique, 2011, 61(4): 313–328. doi: 10.1680/geot.2011.61.4.313
    [21]
    YUAN S, LIU X, ROMERO E, et al. Discussion on the separation of macropores and micropores in a compacted expansive clay[J]. Géotechnique, 2020, 10(3): 454–460. doi: 10.1680/jgele.20.00056
    [22]
    刘伟, 梁栋, 杨仲田, 等. 高温作用对膨润土孔隙结构的影响[J]. 化工新型材料, 2018, 46(增刊1): 43–46. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC2018S1011.htm

    LIU Wei, LIANG Dong, YANG Zhong-tian, et al. Influence of high temperature on the pore structure of bentonite[J]. New Chemical Materials, 2018, 46(S1): 43–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC2018S1011.htm
    [23]
    徐颖, 邓利蓉, 芦玉峰, 等. 热处理对柯尔碱膨润土微观结构和物化性能的影响[J]. 岩矿测试, 2019, 38(3): 280–287. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903005.htm

    XU Ying, DENG Li-rong, LU Yu-feng, et al. Effect of thermal treatment on the composition and physicochemical properties of bentonite from the Kerjian Region, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 280–287. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903005.htm
    [24]
    COUTURE R A. Steam rapidly reduces the swelling capacity of bentonite[J]. Nature, 1985, 318(6041): 50–52. doi: 10.1038/318050a0
    [25]
    PUSCH R, BLUEMLING P, JOHNSON L. Performance of strongly compressed MX-80 pellets under repository-like conditions[J]. Applied Clay Science, 2003, 23(1/2/3/4): 239–244.
    [26]
    INOUE A, WATANABE T, KOHYAMA N, et al. Characterization of illitization of smectite in bentonite beds at kinnekulle, Sweden[J]. Clays and Clay Minerals, 1990, 38(3): 241–249. doi: 10.1346/CCMN.1990.0380302
    [27]
    CUI Y J, LOISEAU C, DELAGE P. Microstructure changes of a confined swelling soil due to suction controlled hydration[J]. Proceedings of the 3nd International Conference on Unsaturated Soils, 2002, 2: 593–598.
    [28]
    YE W M, WANG Y, WANG Q, et al. Stress-dependent temperature effect on the swelling behavior of compacted GMZ bentonite[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3897–3907. doi: 10.1007/s10064-020-01801-2
    [29]
    WANG Q, CUI Y, MINH TANG A, et al. Time- and density-dependent microstructure features of compacted bentonite[J]. Soils and Foundations, 2014, 54(4): 657–666. doi: 10.1016/j.sandf.2014.06.021
    [30]
    NOWAMOOZ H, MASROURI F. Influence of suction cycles on the soil fabric of compacted swelling soil[J]. Comptes Rendus Geoscience, 2010, 342(12): 901–910. doi: 10.1016/j.crte.2010.10.003
    [31]
    LLORET A, VILLAR M V, SÀNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27–40. doi: 10.1680/geot.2003.53.1.27
    [32]
    SUDDEEPONG A, CHAI J, SHEN S, et al. Deformation behaviour of clay under repeated one-dimensional unloading–reloading[J]. Canadian Geotechnical Journal, 2015, 52(8): 1035–1044. doi: 10.1139/cgj-2014-0216
    [33]
    贺勇. 化-水-力耦合作用下高压实GMZ膨润土体变特征研究[D]. 上海: 同济大学, 2017.

    HE Yong. Volume Change Behavior of Highly Compacted GMZ Bentonite under Chemo-Hydro-Mechanical Conditions[D]. Shanghai: Tongji University, 2017. (In Chinese)
    [34]
    MATA C, ROMERO E, LEDESMA A. Hydro-chemical effects on water retention in bentonite-sand mixtures[C]// Proceedings 3rd International Conference on Unsaturated Soils, Recife, 2002, Brazil.
    [35]
    MOKNI N. Deformation and Flow Driven by Osmotic Processes in Porous Materials[D]. Barcelona: Polytechnic University of Catalonia, 2011.
    [36]
    LIU L, CHEN Y, YE W, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH–anions[J]. Applied Clay Science, 2018, 161: 334–342. doi: 10.1016/j.clay.2018.04.023
    [37]
    BAO C, JIAXING G, HUIXIN Z. Alteration of compacted GMZ bentonite by infiltration of alkaline solution[J]. Clay Minerals, 2016, 51(2): 237–247. doi: 10.1180/claymin.2016.051.2.10
    [38]
    SUN Z, CHEN Y, CUI Y, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: The Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66–74. doi: 10.1016/j.enggeo.2018.08.002
    [39]
    刘樟荣, 叶为民, 崔玉军, 等. 基于微孔填充和毛细管凝聚理论的持水曲线模型[J]. 岩土力学, 2021, 42(6): 1549–1556. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106008.htm

    LIU Zhang-rong, YE Wei-min, CUI Yu-jun, et al. A micro-pore filling and capillary condensation theories based water retention model[J]. Rock and Soil Mechanics, 2021, 42(6): 1549–1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106008.htm
    [40]
    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105–112. doi: 10.1680/geot.2003.53.1.105
    [41]
    费锁柱, 谭晓慧, 董小乐, 等. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691–1699. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109019.htm

    FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, et al. A micro-pore filling and capillary condensation theories based water retention model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691–1699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109019.htm
    [42]
    YE W M, ZHANG F, CHEN B, et al. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite[J]. Environmental Earth Sciences, 2014, 72(7): 2621–2630. doi: 10.1007/s12665-014-3169-x
    [43]
    WEN Z. Physical property of China's buffer material for high-level radioactive waste repositories[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 794–800.
    [44]
    MITACHI T. Mechanical behavior of bentonite-sand mixtures as buffer materials[J]. Soils and Foundations, 2008, 48(3): 363–374. doi: 10.3208/sandf.48.363
    [45]
    RAO S M, K. R. Hydro-mechanical characterization of Barmer 1 bentonite from Rajasthan, India[J]. Nuclear Engineering and Design, 2013, 265: 330–340. doi: 10.1016/j.nucengdes.2013.09.012
    [46]
    WANG Q, MINH TANG A, CUI Y, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture[J]. Soils and Foundations, 2013, 53(2): 232–245. doi: 10.1016/j.sandf.2013.02.004
    [47]
    YUAN S Y, LIU X F, BUZZI O. Effects of soil structure on the permeability of saturated Maryland clay[J]. Géotechnique, 2019, 69(1): 72–78. doi: 10.1680/jgeot.17.P.120
    [48]
    宋帅兵. 高庙子膨润土孔隙结构多尺度特征及其渗流特性研究[D]. 徐州: 中国矿业大学, 2020.

    SONG Shuai-bing. Multi-scale Characteristics of Pore Structure and Seepage Characteristics of GMZ Bentonite[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
    [49]
    叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29–36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm

    YE Wei-min, LIU Zhang-rong, CUI Yu-jun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering. 2020, 42(1): 29–36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm
    [50]
    KOMINE H, OGATA N. Predicting swelling characteristics of bentonites[J]. Journal of Geotechnical and Geo- environmental Engineering, 2004, 130(8): 818–829. doi: 10.1061/(ASCE)1090-0241(2004)130:8(818)
    [51]
    TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437–450. doi: 10.1139/t03-096
    [52]
    SUN H Q. Prediction of swelling pressure of compacted bentonite with respect to void ratio based on diffuse double layer theory[C]// Proceedings of the 1st GeoMEast International Congress and Exhibition, 2017, Giza.
    [53]
    SOUZA R F C, PEJON O J. Pore size distribution and swelling behavior of compacted bentonite/claystone and bentonite/sand mixtures[J]. Engineering Geology, 2020, 275: 105738. doi: 10.1016/j.enggeo.2020.105738
  • Related Articles

    [1]Collaborative risk assessment approach in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240581
    [2]FENG Shijin, LI Haodong, CAO Jianfeng, LIU zonghui, ZHANG Xiaolei. Evaluation of collaborative disposal of heavy metals in MSWI fly ash along with its environmental risk assessment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 699-708. DOI: 10.11779/CJGE20220004
    [3]CAI Yao-jun, ZHOU Zhao, YANG Xing-guo, WEI Ying-qi, ZHENG Dong-jian, PENG Wen-xiang, ZHONG Qi-ming, WANG Heng. Rapid detection for risk assessment, emergency disposal technology and equipment development of barrier lakes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1266-1280. DOI: 10.11779/CJGE202207007
    [4]WANG Zhe-chao, LU Bao-qi, LI Shu-cai, QIU Dao-hong, QIAO Li-ping, YU Feng, BI Li-ping. Risk assessment for an underground crude oil storage facility with water-curtaining system during construction phase[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1057-1067. DOI: 10.11779/CJGE201506012
    [5]WU Yue, LIU Dong-sheng, ZHOU Zhong-hao. Mobility assessment model for landslide mass considering disintegration energy consumption in slipping process[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 35-46. DOI: 10.11779/CJGE201501003
    [6]XIN Xin, WAN Peng, SHEN Yuan-shun. Risk assessment of construction of excavations in areas of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 342-346.
    [7]XU Zhen-hao, LI Shu-cai, LI Li-ping, CHEN Jun, SHI Shao-shuai. Construction permit mechanism of karst tunnels based on dynamic assessment and management of risk[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1714-1725.
    [8]ZHENG Jun-jie, LIN Chi-feng, ZHAO Dong-an, DING Lie-yun. Risk assessment of shield tunnel construction cost using fuzzy fault tree[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 501.
    [9]LAN Shouqi, ZHANG Qinghe. Risk assessment of deep excavation during construction based on fuzzy theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 648-652.
    [10]HUANG Hongwei, ZHU Lin, XIE Xiongyao. Risk assessment on engineering feasibility of key events in Shanghai metro line No. 11[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1103-1107.
  • Cited by

    Periodical cited type(41)

    1. 侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 .
    2. 常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 .
    3. 王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 . 本站查看
    4. 刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 .
    5. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
    6. 潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 .
    7. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 .
    8. 葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 .
    9. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 .
    10. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    11. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    12. 代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 .
    13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 .
    14. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 .
    15. 罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 .
    16. 王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 . 本站查看
    17. 李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 .
    18. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看
    19. 马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 . 本站查看
    20. 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 .
    21. 程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 .
    22. 袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 . 本站查看
    23. 王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 .
    24. 葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 .
    25. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 .
    26. 苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 .
    27. 宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 .
    28. 王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 .
    29. 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 .
    30. 马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 . 本站查看
    31. 袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 .
    32. 李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 .
    33. 张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 .
    34. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 .
    35. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 .
    36. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 .
    37. 郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 .
    38. 杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 .
    39. 马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 .
    40. 车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 .
    41. MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 .

    Other cited types(32)

Catalog

    Article views (398) PDF downloads (416) Cited by(73)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return