Citation: | CAI Ye-qing, CHEN Yong-gui, YE Wei-min, CUI Yu-jun, CHEN Bao. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. DOI: 10.11779/CJGE202011004 |
[1] |
JIA L Y, CHEN Y G, YE W M, et al. Effects of a simulated gap on anisotropic swelling pressure of compacted GMZ bentonite[J]. Engineering Geology, 2019, 248: 155-163. doi: 10.1016/j.enggeo.2018.11.018
|
[2] |
YE W M, WAN M, CHEN B, et al. Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite[J]. Environmental Earth Sciences, 2013, 68(1): 281-288. doi: 10.1007/s12665-012-1738-4
|
[3] |
HUREL C, MARMIER N. Sorption of europium on a MX-80 bentonite sample: experimental and modelling results[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 284(1): 225-230. doi: 10.1007/s10967-010-0476-x
|
[4] |
CHEN Y G, YE W M, YANG X M, et al. Effect of contact time, pH, and ionic strength on Cd(Ⅱ) adsorption from aqueous solution onto bentonite from Gaomiaozi, China[J]. Environmental Earth Sciences, 2011, 64(2): 329-336. doi: 10.1007/s12665-010-0850-6
|
[5] |
叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
YE Wei-min, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
|
[6] |
叶为民, SCHANZ T, 钱丽鑫, 等. 高压实高庙子膨润土GMZ01的膨胀力特征[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3861-3865. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2039.htm
YE Wei-min, SCHANZ T, QIAN Li-xin, et al. Characteristics of swelling pressure of densely compacted Gaomiaozi bentonite GMZ01[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3861-3865. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2039.htm
|
[7] |
KUNZER P, SEHER H, HAUSER W, et al. The influence of colloid formation in a granite groundwater bentonite porewater mixing zone on radionuclide speciation[J]. Journal of Contaminant Hydrology, 2008, 102(3/4): 263-272.
|
[8] |
MISSANA T, ALONSO U, ALBARRAN N, et al. Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1607-1615.
|
[9] |
GRINDROD P, PELETIER M, TAKASE H. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids[J]. Engineering Geology, 1999, 54(1): 159-165.
|
[10] |
BAIK M H, CHO W J, HAHN P S. Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite[J]. Engineering Geology, 2007, 91(2/3/4): 229-239.
|
[11] |
REID C, LUNN R, MOUNTASSIR G E, et al. A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture[J]. Mineralogical Magazine, 2015, 79(6): 1485-1494. doi: 10.1180/minmag.2015.079.6.23
|
[12] |
XU Z, PAN D Q, SUN Y L, et al. Stability of GMZ bentonite colloids: aggregation kinetic and reversibility study[J]. Applied Clay Science, 2018, 161: 436-443. doi: 10.1016/j.clay.2018.05.002
|
[13] |
BIRGERSSON M, BÖRGESSON L, HEDSTRÖM M, et al. Bentinite Erosion Final Report[R]. SKB TR-09-34, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009.
|
[14] |
NERETNIEKS I, LIU LC, MORENO L. Mechanisms and Models for Bentonite Erosion[R]. SKB TR-09-35, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009.
|
[15] |
SCHATZ T, OLIN M, KOSKINEN K, et al. Buffer Erosion in Dilute Groundwater[R]. POSIVA 2012-44. Posiva Oy, 2013.
|
[16] |
SHELTON A, SELLIN P, MISSANA T, et al. Synthesis Report: Colloids and Related Issues in the Long Term Safety Case[R]. SKB TR-17-17. Solna: Swedish Nuclear Fuel and Waste Management Co, 2018.
|
[17] |
陈宝, 田昌春, 郭家兴, 等. 地下水对压实高庙子膨润土冲蚀作用研究[J]. 岩土力学, 2016, 37(11): 3224-3230. doi: 10.16285/j.rsm.2016.11.023
CHEN Bao, TIAN Chang-chun, GUO Jia-xing, et al. Erosion of compacted Gaomiaozi bentonite by groundwater flow[J]. Rock and Soil Mechanics, 2016, 37(11): 3224-3230. (in Chinese) doi: 10.16285/j.rsm.2016.11.023
|
[18] |
黄依艺, 陈宝. 高压实膨润土在处置库围岩裂缝中的侵入行为研究[J]. 岩石力学与工程学报, 2019, 38(12): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912016.htm
HANG Yi-yi, CHEN Bao. On the intrusion of highly compacted bentonite into the host-rock fractures in an HLW disposal repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912016.htm
|
[19] |
XU Z, SUN Y, NIU Z W, et al. Kinetic determination of sedimentation for GMZ bentonite colloids in aqueous solution: effect of pH, temperature and electrolyte concentration[J]. Applied Clay Science, 2020, 184: 105393. doi: 10.1016/j.clay.2019.105393
|
[20] |
PUSCH R. Clay Colloid Formation and Release from MX-80 Buffer[R]. SKB TR-99-31, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1999.
|
[21] |
MISSANA T, ALONSOl Ú, TURRERO M J. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository[J]. Journal of Contaminant Hydrology, 2003, 61(1): 17-31.
|
[22] |
MAYORDOMO N, DEGUELDRE C, ALONSO U, et al. Size distribution of FEBEX bentonite colloids upon fast disaggregation in low-ionic strength water[J]. Clay Minerals, 2016, 51(2): 213-222. doi: 10.1180/claymin.2016.051.2.08
|
[23] |
ALONSO U, MISSANA T, FERNÁNDEZ A M, et al. Erosion behaviour of raw bentonites under compacted and confined conditions: relevance of smectite content and clay/water interactions[J]. Applied Geochemistry, 2018, 94: 11-20. doi: 10.1016/j.apgeochem.2018.04.012
|
[24] |
HEDSTRÖM M, HANSEN E E, NILSSON U. Montmorillonite Phase Behaviour: Relevance for Buffer Erosion in Dilute Groundwater[R]. SKB TR-15-07, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2016.
|
[25] |
NERETNIEKS I, MORENO L. Revisiting Bentonite Erosion Understanding and Modelling Based on the BELBaR Project Findings[R]. SKB TR-17-12. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2018.
|
[26] |
HEDSTRÖM M, BIRGERSSON M, NILSSON U, et al. Role of cation mixing in the sol formation of Ca/Na- montmorillonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1564-1571.
|
[27] |
ALONSO U, MISSANA T, GARCÍA-GUTIÉRRE M. Experimental approach to study the colloid generation from the bentonite barrier to quantify the source term and to assess its relevance on the radionuclide migration[C]//Materials Research Society Sympisium Proceedings, 2007, Boston.
|
[28] |
MISSANA T, ALONSO U, FERNÁNDEZ A M, et al. Colloidal properties of different smectite clays: significance for the bentonite barrier erosion and radionuclide transport in radioactive waste repositories[J]. Applied Geochemistry, 2018, 97: 157-166. doi: 10.1016/j.apgeochem.2018.08.008
|
[29] |
ALBARRAN N, DEGUELDRE C, MISSANA T, et al. Size distribution analysis of colloid generated from compacted bentonite in low ionic strength aqueous solutions[J]. Applied Clay Science, 2014, 95: 284-293. doi: 10.1016/j.clay.2014.04.025
|
[30] |
PLASCHKE M, SCHÄFER T, BUNDSCHUHET T, et al. Size characterization of bentonite colloids by different methods[J]. Analytical Chemistry, 2001, 73(17): 4338-4347. doi: 10.1021/ac010116t
|
[31] |
BAIK M H, LEE S Y. Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 837-841. doi: 10.1016/j.jiec.2010.05.002
|
[32] |
KAUFHOLD S, DOHRMANN R. Detachment of colloidal particles from bentonites in water[J]. Applied Clay Science, 2008, 39(1/2): 50-59.
|
[33] |
BOUBY M, HECK S, SCHAFER T, et al. Report on the Effects of Water Chemistry and Clay Chemistry on Erosion Processes[R]. BELBaR Deliverable D2.4. CIEMAT. 2014.
|
[34] |
ERIKSSON R, SCHATZ T. Rheological properties of clay material at the solid/solution interface formed under quasi-free swelling conditions[J]. Applied Clay Science, 2015, 108: 12-18.
|
[35] |
NERETNIEKS I, LIU L, MORENO L. Mechanisms and Models for Bentonite Erosion[R]. SKB TR-09-35, Stockholm: Swedish Nuclear Fuel and Waste Management Company, 2009.
|
[36] |
PUSCH R, KARNLAND O, HÖKMARK H. GMM-A General Microstructural Model for Qualitative and Quantitative Studies of Smectite Clays[R]. SKB TR-90-43, Stockholm: Swedish Nuclear Fuel and Waste Management Company, 1990.
|
[37] |
陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水-力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm
CHEN Yong-gui, JIA Lin-yan, YE Wei-min, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm
|
[38] |
BIRGERSSON M, HEDSTRÖM M, KARNLAND O. Sol formation ability of Ca/Na-montmorillonite at low ionic strength[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1572-1579.
|
[39] |
LIU L, MORENO L, NERETNIEKS I. A dynamic force balance model for colloidal expansion and its DLVO-based application[J]. Langmuir, 2009, 25(2): 679-687.
|
[40] |
MORENO L, LIU L, NERETNIEKS I. Erosion of sodium bentonite by flow and colloid diffusion[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1600-1606.
|
[41] |
HACKLEY V A, FERRARIS C F. The Use of Nomenclature in Dispersion Science and Technology[S]. 2001.
|
[42] |
MÖRI A, ALEXANDER W R, GECKEIS H, et al. The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217(1/2/3): 33-47.
|
[43] |
KUROSAWA S, KATO H, UETO S, et al. Erosion properties and dispersion-flocculation behavior of bentonite particles[C]//Materials Research Society Sympisium Proceedings, 1999, Boston.
|
[44] |
MISSANA T, ADELL A. On the applicability of DLVO theory to the prediction of clay colloids stability[J]. Journal of Colloid and Interface Science, 2000, 230(1): 150-156.
|
[45] |
GARCÍA-GARCÍA S, JONSSON M, WOLD S. Temperature effect on the stability of bentonite colloids in water[J]. Journal of Colloid and Interface Science, 2006, 298(2): 694-705.
|
[46] |
LIU L, MORENO L, NERETNIEKS I. A novel approach to determine the critical coagulation concentration of a colloidal dispersion with plate-like particles[J]. Langmuir, 2009, 25(2): 688-697.
|
[47] |
HOEK E M V, AGARWAL G K. Extended DLVO interactions between spherical particles and rough surfaces[J]. Journal of Colloid and Interface Science, 2006, 298(1): 50-58. http://www.sciencedirect.com/science/article/pii/S0021979705012786
|
[48] |
MISSANA T, ALONSO U, FERÁNNDEZ A M, et al. Analysis of the stability behaviour of colloids obtained from different smectite clays[J]. Applied Geochemistry, 2018, 92: 180-187.
|
[49] |
LAHTINEN M, HÖLTTÄ P, RIEKKOLA M L, et al. Analysis of colloids released from bentonite and crushed rock[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010, 35(6/7/8): 265-270.
|
[50] |
NORRFORS K K, BOUBY M, HECK S, et al. Montmorillonite colloids: Ⅰ Characterization and stability of dispersions with different size fractions[J]. Applied Clay Science, 2015, 114: 179-189.
|