• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Ye-qing, CHEN Yong-gui, YE Wei-min, CUI Yu-jun, CHEN Bao. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. DOI: 10.11779/CJGE202011004
Citation: CAI Ye-qing, CHEN Yong-gui, YE Wei-min, CUI Yu-jun, CHEN Bao. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. DOI: 10.11779/CJGE202011004

Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository

More Information
  • Received Date: February 19, 2020
  • Available Online: December 05, 2022
  • The compacted bentonite used as a buffer/backfill material for deep geological repositories will release colloid into groundwater under erosion, while stable and mobile colloids may promote the migration of radionuclides, thereby threatening the long-term safety of the repositories. By elaborating the definition and characterization of colloid of bentonite, this study comprehensively reviews and summarizes the research results of generation tests, generation mechanism and stability of colloid. The results show that the bentonite colloid is generated by the continuous hydration of the montmorillonite crystal layer and the separation of free colloidal particles into the aqueous solution. The colloidal concentrations and sizes are significantly affected by clay characteristics, groundwater dynamics and chemical conditions, and the colloidal stability is obviously affected by clay characteristics, groundwater chemical conditions and temperature. The colloid generation test devices include static and dynamic forms which cannot achieve real-time automatic monitoring at present. The classic DLVO theory does not consider the effect of pH on the edge charge of the colloid and the effect of multivalent counter ions, and there are some limitations in the application of montmorillonite clay colloid generation model and colloid stability prediction. Finally, some suggestions are proposed for further researches.
  • [1]
    JIA L Y, CHEN Y G, YE W M, et al. Effects of a simulated gap on anisotropic swelling pressure of compacted GMZ bentonite[J]. Engineering Geology, 2019, 248: 155-163. doi: 10.1016/j.enggeo.2018.11.018
    [2]
    YE W M, WAN M, CHEN B, et al. Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite[J]. Environmental Earth Sciences, 2013, 68(1): 281-288. doi: 10.1007/s12665-012-1738-4
    [3]
    HUREL C, MARMIER N. Sorption of europium on a MX-80 bentonite sample: experimental and modelling results[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 284(1): 225-230. doi: 10.1007/s10967-010-0476-x
    [4]
    CHEN Y G, YE W M, YANG X M, et al. Effect of contact time, pH, and ionic strength on Cd(Ⅱ) adsorption from aqueous solution onto bentonite from Gaomiaozi, China[J]. Environmental Earth Sciences, 2011, 64(2): 329-336. doi: 10.1007/s12665-010-0850-6
    [5]
    叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm

    YE Wei-min, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
    [6]
    叶为民, SCHANZ T, 钱丽鑫, 等. 高压实高庙子膨润土GMZ01的膨胀力特征[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3861-3865. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2039.htm

    YE Wei-min, SCHANZ T, QIAN Li-xin, et al. Characteristics of swelling pressure of densely compacted Gaomiaozi bentonite GMZ01[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3861-3865. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2039.htm
    [7]
    KUNZER P, SEHER H, HAUSER W, et al. The influence of colloid formation in a granite groundwater bentonite porewater mixing zone on radionuclide speciation[J]. Journal of Contaminant Hydrology, 2008, 102(3/4): 263-272.
    [8]
    MISSANA T, ALONSO U, ALBARRAN N, et al. Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1607-1615.
    [9]
    GRINDROD P, PELETIER M, TAKASE H. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids[J]. Engineering Geology, 1999, 54(1): 159-165.
    [10]
    BAIK M H, CHO W J, HAHN P S. Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite[J]. Engineering Geology, 2007, 91(2/3/4): 229-239.
    [11]
    REID C, LUNN R, MOUNTASSIR G E, et al. A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture[J]. Mineralogical Magazine, 2015, 79(6): 1485-1494. doi: 10.1180/minmag.2015.079.6.23
    [12]
    XU Z, PAN D Q, SUN Y L, et al. Stability of GMZ bentonite colloids: aggregation kinetic and reversibility study[J]. Applied Clay Science, 2018, 161: 436-443. doi: 10.1016/j.clay.2018.05.002
    [13]
    BIRGERSSON M, BÖRGESSON L, HEDSTRÖM M, et al. Bentinite Erosion Final Report[R]. SKB TR-09-34, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009.
    [14]
    NERETNIEKS I, LIU LC, MORENO L. Mechanisms and Models for Bentonite Erosion[R]. SKB TR-09-35, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2009.
    [15]
    SCHATZ T, OLIN M, KOSKINEN K, et al. Buffer Erosion in Dilute Groundwater[R]. POSIVA 2012-44. Posiva Oy, 2013.
    [16]
    SHELTON A, SELLIN P, MISSANA T, et al. Synthesis Report: Colloids and Related Issues in the Long Term Safety Case[R]. SKB TR-17-17. Solna: Swedish Nuclear Fuel and Waste Management Co, 2018.
    [17]
    陈宝, 田昌春, 郭家兴, 等. 地下水对压实高庙子膨润土冲蚀作用研究[J]. 岩土力学, 2016, 37(11): 3224-3230. doi: 10.16285/j.rsm.2016.11.023

    CHEN Bao, TIAN Chang-chun, GUO Jia-xing, et al. Erosion of compacted Gaomiaozi bentonite by groundwater flow[J]. Rock and Soil Mechanics, 2016, 37(11): 3224-3230. (in Chinese) doi: 10.16285/j.rsm.2016.11.023
    [18]
    黄依艺, 陈宝. 高压实膨润土在处置库围岩裂缝中的侵入行为研究[J]. 岩石力学与工程学报, 2019, 38(12): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912016.htm

    HANG Yi-yi, CHEN Bao. On the intrusion of highly compacted bentonite into the host-rock fractures in an HLW disposal repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912016.htm
    [19]
    XU Z, SUN Y, NIU Z W, et al. Kinetic determination of sedimentation for GMZ bentonite colloids in aqueous solution: effect of pH, temperature and electrolyte concentration[J]. Applied Clay Science, 2020, 184: 105393. doi: 10.1016/j.clay.2019.105393
    [20]
    PUSCH R. Clay Colloid Formation and Release from MX-80 Buffer[R]. SKB TR-99-31, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1999.
    [21]
    MISSANA T, ALONSOl Ú, TURRERO M J. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository[J]. Journal of Contaminant Hydrology, 2003, 61(1): 17-31.
    [22]
    MAYORDOMO N, DEGUELDRE C, ALONSO U, et al. Size distribution of FEBEX bentonite colloids upon fast disaggregation in low-ionic strength water[J]. Clay Minerals, 2016, 51(2): 213-222. doi: 10.1180/claymin.2016.051.2.08
    [23]
    ALONSO U, MISSANA T, FERNÁNDEZ A M, et al. Erosion behaviour of raw bentonites under compacted and confined conditions: relevance of smectite content and clay/water interactions[J]. Applied Geochemistry, 2018, 94: 11-20. doi: 10.1016/j.apgeochem.2018.04.012
    [24]
    HEDSTRÖM M, HANSEN E E, NILSSON U. Montmorillonite Phase Behaviour: Relevance for Buffer Erosion in Dilute Groundwater[R]. SKB TR-15-07, Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2016.
    [25]
    NERETNIEKS I, MORENO L. Revisiting Bentonite Erosion Understanding and Modelling Based on the BELBaR Project Findings[R]. SKB TR-17-12. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 2018.
    [26]
    HEDSTRÖM M, BIRGERSSON M, NILSSON U, et al. Role of cation mixing in the sol formation of Ca/Na- montmorillonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1564-1571.
    [27]
    ALONSO U, MISSANA T, GARCÍA-GUTIÉRRE M. Experimental approach to study the colloid generation from the bentonite barrier to quantify the source term and to assess its relevance on the radionuclide migration[C]//Materials Research Society Sympisium Proceedings, 2007, Boston.
    [28]
    MISSANA T, ALONSO U, FERNÁNDEZ A M, et al. Colloidal properties of different smectite clays: significance for the bentonite barrier erosion and radionuclide transport in radioactive waste repositories[J]. Applied Geochemistry, 2018, 97: 157-166. doi: 10.1016/j.apgeochem.2018.08.008
    [29]
    ALBARRAN N, DEGUELDRE C, MISSANA T, et al. Size distribution analysis of colloid generated from compacted bentonite in low ionic strength aqueous solutions[J]. Applied Clay Science, 2014, 95: 284-293. doi: 10.1016/j.clay.2014.04.025
    [30]
    PLASCHKE M, SCHÄFER T, BUNDSCHUHET T, et al. Size characterization of bentonite colloids by different methods[J]. Analytical Chemistry, 2001, 73(17): 4338-4347. doi: 10.1021/ac010116t
    [31]
    BAIK M H, LEE S Y. Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 837-841. doi: 10.1016/j.jiec.2010.05.002
    [32]
    KAUFHOLD S, DOHRMANN R. Detachment of colloidal particles from bentonites in water[J]. Applied Clay Science, 2008, 39(1/2): 50-59.
    [33]
    BOUBY M, HECK S, SCHAFER T, et al. Report on the Effects of Water Chemistry and Clay Chemistry on Erosion Processes[R]. BELBaR Deliverable D2.4. CIEMAT. 2014.
    [34]
    ERIKSSON R, SCHATZ T. Rheological properties of clay material at the solid/solution interface formed under quasi-free swelling conditions[J]. Applied Clay Science, 2015, 108: 12-18.
    [35]
    NERETNIEKS I, LIU L, MORENO L. Mechanisms and Models for Bentonite Erosion[R]. SKB TR-09-35, Stockholm: Swedish Nuclear Fuel and Waste Management Company, 2009.
    [36]
    PUSCH R, KARNLAND O, HÖKMARK H. GMM-A General Microstructural Model for Qualitative and Quantitative Studies of Smectite Clays[R]. SKB TR-90-43, Stockholm: Swedish Nuclear Fuel and Waste Management Company, 1990.
    [37]
    陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水-力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm

    CHEN Yong-gui, JIA Lin-yan, YE Wei-min, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm
    [38]
    BIRGERSSON M, HEDSTRÖM M, KARNLAND O. Sol formation ability of Ca/Na-montmorillonite at low ionic strength[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1572-1579.
    [39]
    LIU L, MORENO L, NERETNIEKS I. A dynamic force balance model for colloidal expansion and its DLVO-based application[J]. Langmuir, 2009, 25(2): 679-687.
    [40]
    MORENO L, LIU L, NERETNIEKS I. Erosion of sodium bentonite by flow and colloid diffusion[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1600-1606.
    [41]
    HACKLEY V A, FERRARIS C F. The Use of Nomenclature in Dispersion Science and Technology[S]. 2001.
    [42]
    MÖRI A, ALEXANDER W R, GECKEIS H, et al. The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217(1/2/3): 33-47.
    [43]
    KUROSAWA S, KATO H, UETO S, et al. Erosion properties and dispersion-flocculation behavior of bentonite particles[C]//Materials Research Society Sympisium Proceedings, 1999, Boston.
    [44]
    MISSANA T, ADELL A. On the applicability of DLVO theory to the prediction of clay colloids stability[J]. Journal of Colloid and Interface Science, 2000, 230(1): 150-156.
    [45]
    GARCÍA-GARCÍA S, JONSSON M, WOLD S. Temperature effect on the stability of bentonite colloids in water[J]. Journal of Colloid and Interface Science, 2006, 298(2): 694-705.
    [46]
    LIU L, MORENO L, NERETNIEKS I. A novel approach to determine the critical coagulation concentration of a colloidal dispersion with plate-like particles[J]. Langmuir, 2009, 25(2): 688-697.
    [47]
    HOEK E M V, AGARWAL G K. Extended DLVO interactions between spherical particles and rough surfaces[J]. Journal of Colloid and Interface Science, 2006, 298(1): 50-58. http://www.sciencedirect.com/science/article/pii/S0021979705012786
    [48]
    MISSANA T, ALONSO U, FERÁNNDEZ A M, et al. Analysis of the stability behaviour of colloids obtained from different smectite clays[J]. Applied Geochemistry, 2018, 92: 180-187.
    [49]
    LAHTINEN M, HÖLTTÄ P, RIEKKOLA M L, et al. Analysis of colloids released from bentonite and crushed rock[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010, 35(6/7/8): 265-270.
    [50]
    NORRFORS K K, BOUBY M, HECK S, et al. Montmorillonite colloids: Ⅰ Characterization and stability of dispersions with different size fractions[J]. Applied Clay Science, 2015, 114: 179-189.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return