• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
GUO Yu, CHI Shi-chun, MI Xiao-fei. Experimental study on particle strength and elastic mechanical parameters of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1675-1681. DOI: 10.11779/CJGE202109012
Citation: GUO Yu, CHI Shi-chun, MI Xiao-fei. Experimental study on particle strength and elastic mechanical parameters of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1675-1681. DOI: 10.11779/CJGE202109012

Experimental study on particle strength and elastic mechanical parameters of coarse-grained soil

More Information
  • Received Date: December 22, 2020
  • Available Online: December 02, 2022
  • The strength and deformation characteristics of coarse-grained soil directly affect the deformation law of rockfill dams. In order to study the deformation mechanism of coarse-grained soil from the microscopic level, the discrete element method is widely used as an effective means to simulate the mechanical properties of coarse-grained soil. The particle strength and elastic mechanics are very important for the establishment of the discrete element method model. How to obtain the distribution law of these parameters is a very necessary work at present. The uniaxial compression tests are carried out on a series of Dalian limestone particles with different sizes, and the distribution law of mechanical parameters including the strength and elastic modulus is determined by characterizing the force-displacement experimental curves. The statistical results show that compared with the Weibull distribution and Logistic distribution, the Lognormal distribution has the best statistical effect on particle strength and elastic modulus, and the mean values of both two parameters decrease with the increase of particle size. Then, based on the size correlation of parameters, empirical models for size effect suitable for limestone are established. Finally, the stiffness of limestone particles is discussed preliminarily. The experimental results show that the stiffness of limestone particles has obvious nonlinear characteristics. These results may provide a reference and support for the calibration of microscopic parameters in the numerical simulation of the discrete element method for coarse-grained soil.
  • [1]
    贾宇峰, 王丙申, 迟世春. 堆石料剪切过程中的颗粒破碎研究[J]. 岩土工程学报, 2015, 37(9): 1692-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509024.htm

    JIA Yu-feng, WANG Bing-shen, CHI Shi-chun. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692-1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509024.htm
    [2]
    刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562-566. doi: 10.3969/j.issn.1000-7598.2005.04.011

    LIU Han-long, QIN Hong-yu, GAO Yu-feng, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562-566. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.04.011
    [3]
    张季如, 祝杰, 黄文竞. 侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J]. 岩土工程学报, 2008, 30(6): 783-789. doi: 10.3321/j.issn:1000-4548.2008.06.001

    ZHANG Ji-ru, ZHU Jie, HUANG Wen-jing. Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.06.001
    [4]
    孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

    KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al. Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm
    [5]
    蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm

    CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, et al. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm
    [6]
    CHENG Y P, NAKATA Y, BOLTON M D. Discrete element simulation of crushable soil[J]. Géotechnique, 2003, 53(7): 633-641. doi: 10.1680/geot.2003.53.7.633
    [7]
    DELUZARCHE R, CAMBOU B. Discrete numerical modelling of rockfill dams[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(11): 1075-1096. doi: 10.1002/nag.514
    [8]
    ALAEI E, MAHBOUBI A. A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon[J]. Granular Matter, 2012, 14(6): 707-717. doi: 10.1007/s10035-012-0367-7
    [9]
    CIANTIA M O, ARROYO M, BUTLANSKA J, et al. DEM modelling of cone penetration tests in a double-porosity crushable granular material[J]. Computers and Geotechnics, 2016, 73(1): 109-127.
    [10]
    邵晓泉, 迟世春, 陶勇. 堆石料剪切强度与变形的尺寸效应模拟[J]. 岩土工程学报, 2018, 40(10): 1766-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810003.htm

    SHAO Xiao-quan, CHI Shi-chun, TAO Yong. Numerical simulation of size effect on shear strength and deformation behavior of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1766-1772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810003.htm
    [11]
    MCDOWELL G R, BOLTON M D, ROBERTSON D. The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 2079-2102.
    [12]
    MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679.
    [13]
    迟世春, 王峰, 贾宇峰, 等. 考虑细观单粒强度的堆石料破碎特性研究[J]. 岩土工程学报, 2015, 37(10): 1780-1785. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510007.htm

    CHI Shi-chun, WANG Feng, JIA Yu-feng, et al. Modeling particle breakage of rockfill materials based on sigle particle strength[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1780-1785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510007.htm
    [14]
    张明, 卢裕杰, 杨强. 准脆性材料的破坏概率与强度尺寸效应[J]. 岩石力学与工程学报, 2010, 29(9): 1782-1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009007.htm

    ZHANG Ming, LU Yu-jie, YANG Qiang. Failure probability and strength size effect of quasi-brittle materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1782-1789. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009007.htm
    [15]
    米晓飞, 迟世春. 堆石颗粒强度的尺寸效应研究[J]. 水利与建筑工程学报, 2019, 17(4): 182-187, 197. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201904032.htm

    MI Xiao-fei, CHI Shi-chun. Size effects of rockfill particle strength[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(4): 182-187, 197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201904032.htm
    [16]
    MCDOWELL G R. Discussion: a probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 2001, 51(3): 285-287.
    [17]
    PORTNIKOV D, KALMAN H. Determination of elastic properties of particles using single particle compression test[J]. Powder Technology, 2014, 268(8): 244-252.
    [18]
    杨作梅, 孙静鑫, 郭玉明. 不同含水率对谷子籽粒压缩力学性质与摩擦特性的影响[J]. 农业工程学报, 2015, 31(23): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201523034.htm

    YANG Zuo-mei, SUN Jing-xin, GUO Yu-ming. Effect of moisture content on compression mechanical properties and frictional characteristics of millet grain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 253-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201523034.htm
    [19]
    MADER-ARNDT K, AMAN S, FUCHS R, et al. Contact properties determination of macroscopic fine disperse glass particles via compression tests in normal direction[J]. Advanced Powder Technology, 2017, 28(1): 101-114.
    [20]
    YAP S F, ADAMS M J, SEVILLE J P K, et al. Single and bulk compression of pharmaceutical excipients: evaluation of mechanical properties[J]. Powder Technology, 2008, 185(1): 1-10.
    [21]
    ANTONYUK S, TOMAS J, HEINRICH S, et al. Breakage behaviour of spherical granulates by compression[J]. Chemical Engineering Science, 2005, 60(14): 4031-4044.
    [22]
    JAEGER J C. Failure of rocks under tensile condition[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967, 4(2): 219-227.
    [23]
    Compression Test of Food Materials of Convex Shape: ASAE S368.4 DEC2000 (R2017)[S]. 2017.
    [24]
    蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002.

    CAI Mei-feng. Rock Mechanics and Engineering[M]. Beijing: Science Press, 2002. (in Chinese)
    [25]
    魏治文, 程琳, 来记桃, 等. 几种异常值判别准则在安全监测数据处理中的应用[J]. 大坝与安全, 2009, 23(1): 67-69, 84.

    WEI Zhi-wen, CHENG Lin, LAI Ji-tao, et al. Application of some statistical criteria in safety monitoring data processing[J]. DAM & Safety, 2009, 23(1): 67-69, 84. (in Chinese)
    [26]
    马建全, 李广杰, 徐佩华, 等. 基于拉丁方抽样及K-S检验的边坡可靠性分析[J]. 岩土力学, 2011, 32(7): 2153-2156. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201107042.htm

    MA Jian-quan, LI Guang-jie, XU Pei-hua, et al. Reliability analysis of slope with Latin hypercube sampling and K-S test[J]. Rock and Soil Mechanics, 2011, 32(7): 2153-2156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201107042.htm
  • Related Articles

    [1]ZHAO Zening, DUAN Wei, CAI Guojun, WU Meng, LIU Songyu. Improvement and probabilistic form of CPT-based liquefaction evaluationmodel in Chinese code[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 869-876. DOI: 10.11779/CJGE20240107
    [2]WANG Zhihua, JI Zhanpeng, YI Ruibo, ZHANG Xinlei, GAO Hongmei, LIU Lu. Constitutive model for thixotropic fluid considering phase characteristics of liquefaction of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2275-2283. DOI: 10.11779/CJGE20230294
    [3]SUN Rui, ZHAO Qian-yu, YUAN Xiao-ming. Hyperbolic model for estimating liquefaction potential of sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2061-2068. DOI: 10.11779/CJGE201411012
    [4]XU Cheng-shun, LIU Hai-qiang, DU Xiu-li, YIN Zhan-qiao. Application of dynamic true triaxial apparatus to study on sand liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1895-1900.
    [5]Visualized cyclic triaxial tests on sand liquefaction using digital imaging technique[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [6]JIN Zhiren. Prediction of sand liquefaction based on distance discriminant analysis and its application[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 776-780.
    [7]CHEN Guoxing, LI Fangming. Probabilistic estimation of sand liquefaction based on neural network model of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 301-305.
    [8]WANG Jianhua, CHENG Guoyong. Study of correlation between the shear wave velocity and the liquefaction resistance of saturated sands[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 369-373.
    [9]Shen Zhujiang. A granular medium model for liquefaction analysis of sands[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 742-748.
    [10]Xie Dingyi, Wu Zhihui. Effect of Irregular Dynamic Impulse History on Liquefaction Characteristics of Saturated Sand[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(4): 1-12.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return