• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhihua, JI Zhanpeng, YI Ruibo, ZHANG Xinlei, GAO Hongmei, LIU Lu. Constitutive model for thixotropic fluid considering phase characteristics of liquefaction of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2275-2283. DOI: 10.11779/CJGE20230294
Citation: WANG Zhihua, JI Zhanpeng, YI Ruibo, ZHANG Xinlei, GAO Hongmei, LIU Lu. Constitutive model for thixotropic fluid considering phase characteristics of liquefaction of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2275-2283. DOI: 10.11779/CJGE20230294

Constitutive model for thixotropic fluid considering phase characteristics of liquefaction of saturated sand

More Information
  • Received Date: April 05, 2023
  • Reasonable evaluation of the property evolution of saturated sand during liquefaction and the dynamic response under cyclic loading is the key to solve the problem of large deformation of liquefied sand. Through the undrained cyclic triaxial tests on saturated sand, the dynamic response of saturated medium-density Nanjing fine sand during liquefaction process is analyzed, and its stage characteristics are discussed. The Gompertz function is introduced to describe the relationship between apparent viscosity and pore pressure ratio, and an improved thixotropic pore pressure fluid model is proposed. The main conclusions are as follows : (1) According to the growth rate of pore pressure ratio, the liquefaction process is divided into four stages: solid stage, solid-fluid stage, thixotropic fluid stage and stable stage. (2) The relationship between apparent viscosity and pore pressure ratio is described by using the Gompertz function instead of the linear function. A modified thixotropic pore pressure fluid model considering stage characteristics is proposed, which provides a new unified method for solving seismic liquefaction problems.
  • [1]
    SHAO Z F, ZHONG J H, HOWELL J, et al. Liquefaction structures induced by the M5.7 earthquake on May 28, 2018 in Songyuan, Jilin Province, NE China and research implication[J]. Journal of Palaeogeography, 2020, 9(1): 1-19. doi: 10.1186/s42501-019-0049-z
    [2]
    SERIKAWA Y, SETIAWAN H, NAKAMURA M, et al. Damage to houses and buildings induced by liquefaction in the 2016 Kumamoto earthquakes in Japan[J]. Journal of Japan Society of Civil Engineers, Ser A1 (Structural Engineering & Earthquake Engineering), 2017, 73(4): 1601-1607.
    [3]
    许成顺, 高英, 杜修力, 等. 双向耦合剪切条件下饱和砂土动强度特性试验研究[J]. 岩土工程学报, 2014, 36(12): 2335-2340. doi: 10.11779/CJGE201412024

    XU Chengshun, GAO Ying, DU Xiuli, et al. Dynamic strength of saturated sand under bi-directional cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2335-2340. (in Chinese) doi: 10.11779/CJGE201412024
    [4]
    SEED H B, LEE K L. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(6): 105-134. doi: 10.1061/JSFEAQ.0000913
    [5]
    KONSTADINOU M, GEORGIANNOU V N. Prediction of pore water pressure generation leading to liquefaction under torsional cyclic loading[J]. Soils and Foundations, 2014, 54(5): 993-1005. doi: 10.1016/j.sandf.2014.09.010
    [6]
    PAN H, CHEN G X, LIU H L, et al. Behavior of large post-liquefaction deformation in saturated Nanjing fine sand[J]. Earthquake Engineering and Engineering Vibration, 2011, 10(2): 187-193. doi: 10.1007/s11803-011-0057-1
    [7]
    PAN H, CHEN G X, SUN T, et al. Behaviour of large post-liquefaction deformation in saturated sand-gravel composites[J]. Journal of Central South University, 2012, 19(2): 547-552. doi: 10.1007/s11771-012-1038-x
    [8]
    王志华, 何健, 高洪梅, 等. 基于触变流体理论的可液化土体振动孔压模型[J]. 岩土工程学报, 2018, 40(12): 2332-2340. doi: 10.11779/CJGE201812023

    WANG Zhihua, HE Jian, GAO Hongmei, et al. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. (in Chinese) doi: 10.11779/CJGE201812023
    [9]
    王志华, 吕丛, 许振巍, 等. 循环荷载下饱和砂土的孔压触变性[J]. 岩土工程学报, 2014, 36(10): 1831-1837. doi: 10.11779/CJGE201410010

    WANG Zhihua, LÜ Cong, XU Zhenwei, et al. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. (in Chinese) doi: 10.11779/CJGE201410010
    [10]
    SEED H B, MARTIN P P, LYSMER J. Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering Division, 1976, 102(4): 323-346. doi: 10.1061/AJGEB6.0000258
    [11]
    NEMAT-NASSER S, SHOKOOH A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing[J]. Canadian Geotechnical Journal, 1979, 16(4): 659-678. doi: 10.1139/t79-076
    [12]
    MELE L. An experimental study on the apparent viscosity of sandy soils: from liquefaction triggering to pseudo-plastic behaviour of liquefied sands[J]. Acta Geotechnica, 2022, 17(2): 463-481. doi: 10.1007/s11440-021-01261-2
    [13]
    LIRER S, MELE L. On the apparent viscosity of granular soils during liquefaction tests[J]. Bulletin of Earthquake Engineering, 2019, 17(11): 5809-5824. doi: 10.1007/s10518-019-00706-0
    [14]
    CHENG D C H, EVANS F. Phenomenological characterization of the rheological behaviour of inelastic reversible thixotropic and antithixotropic fluids[J]. British Journal of Applied Physics, 1965, 16(11): 1599-1617. doi: 10.1088/0508-3443/16/11/301
    [15]
    CHENG D C. Characterisation of thixotropy revisited[J]. Rheologica Acta, 2003, 42(4): 372-382. doi: 10.1007/s00397-002-0286-3
    [16]
    WANG Z H, MA J L, GAO H M, et al. Unified thixotropic fluid model for soil liquefaction[J]. Géotechnique, 2020, 70(10): 849-862. doi: 10.1680/jgeot.17.P.300
  • Cited by

    Periodical cited type(12)

    1. 李贝贝. 强动压巷道底板变形破坏特征及控制技术研究. 山东煤炭科技. 2025(01): 1-4+11 .
    2. 毕智强,于振亚,张涛. 深井动压软岩巷道底鼓变形破坏机理与防治技术. 陕西煤炭. 2025(04): 84-88+113 .
    3. 伊丙鼎. 煤层水仓围岩变形破坏特征及控制技术研究. 煤炭工程. 2024(03): 117-123 .
    4. 肖同强,王泽源,刘发义,代晓亮,赵帅,余子豪. 深部强动压巷道底鼓控制机理及技术研究. 采矿与安全工程学报. 2024(04): 666-676 .
    5. 丁维波,王丹影,闫医慧. 回采巷道底鼓机理及防治技术研究. 煤炭技术. 2024(08): 23-27 .
    6. 朱国保,董垠枫. 非均质围岩隧道断面的施工关键技术研究. 四川建筑. 2024(05): 200-201 .
    7. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 .
    8. 柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 .
    9. 吕情绪,曹军,高亮. 重复采动回采巷道变形机理及稳定控制. 中国矿业. 2023(05): 96-103 .
    10. 丁自伟,王少轩,王庆阳,王耀声,王春斌,李军岐,邸广强,李亮. 软岩巷道底鼓机理及其稳定性控制研究. 煤炭工程. 2023(07): 102-109 .
    11. 吕志强,黄亚军,景明,徐啸川. 深部软岩巷道变形破坏机理及支护技术. 能源与环保. 2023(11): 280-286 .
    12. 杨晓炜. 深部软岩大断面巷道大变形控制技术研究. 能源与环保. 2023(11): 312-318 .

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return