Citation: | ZHAO Zening, DUAN Wei, CAI Guojun, WU Meng, LIU Songyu. Improvement and probabilistic form of CPT-based liquefaction evaluationmodel in Chinese code[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 869-876. DOI: 10.11779/CJGE20240107 |
[1] |
YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313.
|
[2] |
CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317-331. doi: 10.1680/jgeot.18.P.180
|
[3] |
ZHAO Z N, DUAN W, CAI G J, et al. CPT-based fully probabilistic seismic liquefaction potential assessment to reduce uncertainty: integrating XGBoost algorithm with Bayesian theorem[J]. Computers and Geotechnics, 2022, 149: 104868. doi: 10.1016/j.compgeo.2022.104868
|
[4] |
张思宇, 李兆焱, 袁晓铭. 国内外静力触探液化判别方法对比检验[J]. 岩土力学, 2024, 45(5): 1517-1526, 1539.
ZHANG Siyu, LI Zhaoyan, YUAN Xiaoming. Comparison and validation of cone penetration test-based liquefaction evaluation methods[J]. Rock and Soil Mechanics, 2024, 45(5): 1517-1526, 1539. (in Chinese)
|
[5] |
岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2004.
Code for Investigation of Geotechnical Engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)
|
[6] |
张思宇, 李兆焱, 袁晓铭. 基于静力触探试验的液化判别新方法[J]. 岩土力学, 2022, 43(6): 1596-1606.
ZHANG Siyu, LI Zhaoyan, YUAN Xiaoming. A new method for evaluating liquefaction based on cone penetration test[J]. Rock and Soil Mechanics, 2022, 43(6): 1596-1606. (in Chinese)
|
[7] |
YANG Y, CHEN L W, SUN R, et al. A depth-consistent SPT-based empirical equation for evaluating sand liquefaction[J]. Engineering Geology, 2017, 221: 41-49. doi: 10.1016/j.enggeo.2017.02.032
|
[8] |
孙锐, 袁晓铭. 适于不同深度土层液化的剪切波速判别公式[J]. 岩土工程学报, 2019, 41(3): 439-447.
SUN Rui, YUAN Xiaoming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 439-447. (in Chinese)
|
[9] |
JUANG C H, CHING J, KU C S, et al. Unified CPTu-based probabilistic model for assessing probability of liquefaction of sand and clay[J]. Géotechnique, 2012, 62(10): 877-892. doi: 10.1680/geot.9.P.025
|
[10] |
ROBERTSON P K, WRIDE C F. Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3): 442-459. doi: 10.1139/t98-017
|
[11] |
ZHAO Z N, DUAN W, CAI G J, et al. Probabilistic capacity energy-based machine learning models for soil liquefaction reliability analysis[J]. Engineering Geology, 2024, 338: 107613. doi: 10.1016/j.enggeo.2024.107613
|
[12] |
DUAN W, ZHAO Z N, CAI G J, et al. Evaluating model uncertainty of an in situ state parameter-based simplified method for reliability analysis of liquefaction potential[J]. Computers and Geotechnics, 2022, 151: 104957. doi: 10.1016/j.compgeo.2022.104957
|
[13] |
JUANG C H, ZHANG J, SHEN M F, et al. Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis[J]. Engineering Geology, 2019, 249: 148-161. doi: 10.1016/j.enggeo.2018.12.010
|
[14] |
KU C S, JUANG C H, CHANG C W, et al. Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application[J]. Canadian Geotechnical Journal, 2012, 49(1): 27-44.
|
[15] |
ZHANG X L, LI X Y, XU C S. Study on the corrected hyperbolic model of liquefaction evaluation for fine-grained sand[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106424. doi: 10.1016/j.soildyn.2020.106424
|
[16] |
张小玲, 李秀瑜, 杜修力. 考虑细粒含量的砂土液化判别双曲线模型研究[J]. 岩土工程学报, 2021, 43(3): 448-455.
ZHANG Xiaoling, LI Xiuyu, DU Xiuli. Hyperbolic model for estimating liquefaction potential of sand considering the influences of fine grains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 448-455. (in Chinese)
|
[17] |
贾端阳, 陈龙伟, 谢旺青, 等. 基于标准贯入试验的土壤液化判别公式锤击数基准值研究[J]. 岩土力学, 2023, 44(10): 3031-3038.
JIA Duanyang, CHEN Longwei, XIE Wangqing, et al. Reference blow counts of standard penetration tests used in soil liquefaction evaluation formulae[J]. Rock and Soil Mechanics, 2023, 44(10): 3031-3038. (in Chinese)
|
[18] |
BOULANGER R W, IDRISS I M. CPT-based liquefaction triggering procedure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 04015065.
|
[19] |
谢君斐. 关于修改抗震规范砂土液化判别式的几点意见[J]. 地震工程与工程振动, 1984, 4(2): 95-126.
XIE Junfei. Some comments on the formular estimating the liquefaction of sand in revised aseismic design code[J]. Journal of Earthquake Engineering and Engineering Vibration, 1984, 4(2): 95-126. (in Chinese)
|
[20] |
HU J L. A new approach for constructing two Bayesian network models for predicting the liquefaction of gravelly soil[J]. Computers and Geotechnics, 2021, 137: 104304. doi: 10.1016/j.compgeo.2021.104304
|
[21] |
MOSS R E, SEED R B, KAYEN R E, et al. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1032-1051.
|
[22] |
ZHANG J, WANG T P, XIAO S H, et al. Chinese code methods for liquefaction potential assessment based on standard penetration test: an extension[J]. Soil Dynamics and Earthquake Engineering, 2021, 144: 106697.
|
[23] |
CAI G J, LIU S Y, PUPPALA A J. Liquefaction assessments using seismic piezocone penetration (SCPTU) test investigations in Tangshan Region in China[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 141-150.
|
[1] | HAN Hong-xing, CHEN-Wei, QIU Zi-feng, FU Xu-dong. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 234-239. DOI: 10.11779/CJGE2016S2038 |
[2] | HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053 |
[3] | LIANG Zheng-zhao, XIAO Dong-kun, LI Cong-cong, WU Xian-kai, GONG Bin. Numerical study on strength and failure modes of rock mass with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2086-2095. DOI: 10.11779/CJGE201411015 |
[4] | DAI Xin, XU wei, ZOU Li, SHEN Qing-feng. Numerical simulation of shafts during excavation process[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 154-157. |
[5] | Numerical simulation of 3D hydraulic fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1875-1881. |
[6] | HUANG Zhiping, TANG Chunan, ZHU Wancheng, PANG Mingzhang. Numerical simulation on failure modes of rock bars under different wave lengths[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1048-1053. |
[7] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |
[10] | Zhu Wancheng, Tang Chun'an. Numerical simulation on the propagation processes of mixed mode cracks in rock plates[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 231-234. |