• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
SONG Shi-xiong, ZHANG Jian-min. Thermodynamic constitutive model for rheological behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 129-133. DOI: 10.11779/CJGE2015S1026
Citation: SONG Shi-xiong, ZHANG Jian-min. Thermodynamic constitutive model for rheological behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 129-133. DOI: 10.11779/CJGE2015S1026

Thermodynamic constitutive model for rheological behavior of sand

More Information
  • Received Date: March 25, 2015
  • Published Date: July 24, 2015
  • Based on the non-equilibrium thermodynamics, a granular entropy sg and a granular temperature Tg are introduced to describe the collisions, sliding, rolling of sand particles. The elastic relaxation caused by granular temperature variation is used to reflect the irreversible deformation of sand. The thermodynamic governing equations are derived to predict the macroscopic mechanical behavior of sand. Confined compression and isotropic compression tests are investigated using the proposed method. The results indicate that the proposed model can well describe sand relaxation and creep behavior. The granular entropy is excited and increases until a steady value in loading process, and the granular entropy gradually decays until to zero in the rheological process after loading. The elastic relaxation caused by granular temperature leads to the rheological behavior, and the rheology eventually stops at a steady value when the granular entropy decays to zero.
  • [1]
    LADE P V, LIU C. Experimental study of drained creep behavior of sand[J]. Journal of Engineering Mechanics, 1998, 124(8): 912-920.
    [2]
    LADE P V. Experimental study and analysis of creep and stress relaxation in granular materials[C]// Advances in Measurement and Modeling of Soil Behavior. ASCE, 2007: 1-11.
    [3]
    MURAYAMA S, MICHIHIRO K, SAKAGAMI T. Creep characteristics of sand[J]. Soils and Foundations, 1984, 24(5).
    [4]
    张 云, 薛禹群, 施小清, 等. 饱和砂性土非线性蠕变模型试验研究[J]. 岩土力学, 2005, 26(12): 1869-1873. (ZHANG Yun, XUE Yu-Qun, SHI Xiao-Qing, et al. Study on nonlinear creep model for saturated sand[J]. Rock and Soil Mechanics, 2005, 26(12): 1869-1873. (in Chinese))
    [5]
    杨 奇, 冷伍明, 聂如松, 等. 砂土蠕变特性试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 4282-4286. (YANG Qi, LENg Wu-ming, NIE Ru-song, et al. Laboratory test study of creep behavior of sandy[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 4282-4286. (in Chinese))
    [6]
    王者超, 乔丽苹. 土蠕变性质及其模型研究综述与讨论[J]. 岩土力学, 2011, 32(8): 2251-2260. (WANG Zhe-chao, QIAO Li-ping. A review and discussion on creep behavior of soil and its models[J]. Rock and soil Mechanics, 2011, 32(8): 2251-2260. (in Chinese))
    [7]
    SONG S, SUN Q, JIN F, ZHANG C. Analysis of parameters in granular solid hydrodynamics for triaxial compression tests[J]. Acta Mechanica Solida Sinica, 2014, 27(1): 15-27.
    [8]
    宋世雄, 孙其诚, 费明龙, 等. 颗粒材料热力学理论在简单剪切流中的应用[J]. 中国科学: 物理学, 力学, 天文学, 2013, 43(7): 881-889. (SONG Shi-xiong, SUN Qi-cheng, FEI Ming-long, et al. Thermodynamic analysis of simple shear granular flows[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(7): 881-889. (in Chinese))
    [9]
    SUN Q, SONG S, JIN F, et al. Elastic energy and relaxation in triaxial compressions[J]. Granular Matter, 2011, 13(6): 743-750.
    [10]
    孙其诚, 宋世雄, 蒋亦民, 等. 基于颗粒物质流体动力学的三轴力学分析[J]. 力学学报, 2012, 44(2): 447-450. (SUN Qi-cheng, SONG Shi-Xiong, JIANG Yi-Min et al. Granular solid hydrodynamics and analyses on triaxial compressions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 447-450. (in Chinese))
    [11]
    宋世雄. 基于非平衡态热力学的砂土本构关系研究[D]. 北京: 清华大学, 2013. (SONG Shi-xiong. Study on the constitutive relationship of sands based on non-equilibrium thermodynamics[D]. Beijing: Tsinghua University, 2013. (in Chinese))
    [12]
    JIANG Y, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3): 139-156.
    [13]
    蒋亦民, 刘 佑. 砂土的流体动力学方程与本构模型的比较[J]. 岩土力学, 2010(6): 1729-1738. (JIANG Yi-Min, LIU Mario. Hydrodynamic method versus constitutive modeling in geotechnical materials[J]. Rock and Soil Mechanics, 2010, 31(6): 1731-1738. (in Chinese))
    [14]
    JIANG Y, LIU M. Granular solid hydrodynamics (GSH): a broad-ranged macroscopic theory of granular media[J]. Acta Mechanica, 2014, 225(8): 2363-2384.
    [15]
    HOULSBY G T. The work input to a granular material[J]. Géotechnique, 1979, 29(3): 354-358.
    [16]
    MIKSIC A, ALAVA M J. Evolution of grain contacts in a granular sample under creep and stress relaxation[J]. Physical Review E, 2013, 88(3): 032207.
  • Related Articles

    [1]ZHAO Zening, DUAN Wei, CAI Guojun, WU Meng, LIU Songyu. Improvement and probabilistic form of CPT-based liquefaction evaluationmodel in Chinese code[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 869-876. DOI: 10.11779/CJGE20240107
    [2]WANG Zhihua, JI Zhanpeng, YI Ruibo, ZHANG Xinlei, GAO Hongmei, LIU Lu. Constitutive model for thixotropic fluid considering phase characteristics of liquefaction of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2275-2283. DOI: 10.11779/CJGE20230294
    [3]SUN Rui, ZHAO Qian-yu, YUAN Xiao-ming. Hyperbolic model for estimating liquefaction potential of sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2061-2068. DOI: 10.11779/CJGE201411012
    [4]XU Cheng-shun, LIU Hai-qiang, DU Xiu-li, YIN Zhan-qiao. Application of dynamic true triaxial apparatus to study on sand liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1895-1900.
    [5]Visualized cyclic triaxial tests on sand liquefaction using digital imaging technique[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [6]JIN Zhiren. Prediction of sand liquefaction based on distance discriminant analysis and its application[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 776-780.
    [7]CHEN Guoxing, LI Fangming. Probabilistic estimation of sand liquefaction based on neural network model of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 301-305.
    [8]WANG Jianhua, CHENG Guoyong. Study of correlation between the shear wave velocity and the liquefaction resistance of saturated sands[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 369-373.
    [9]Shen Zhujiang. A granular medium model for liquefaction analysis of sands[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 742-748.
    [10]Xie Dingyi, Wu Zhihui. Effect of Irregular Dynamic Impulse History on Liquefaction Characteristics of Saturated Sand[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(4): 1-12.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (334) PDF downloads (479) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return