SUN Chuang, AO Yun-he, ZHANG Jia-ming, WANG Shuai. Particle flow of meso-fracture characteristics and macro-scale effect of granites[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1687-1695. DOI: 10.11779/CJGE202009013
    Citation: SUN Chuang, AO Yun-he, ZHANG Jia-ming, WANG Shuai. Particle flow of meso-fracture characteristics and macro-scale effect of granites[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1687-1695. DOI: 10.11779/CJGE202009013

    Particle flow of meso-fracture characteristics and macro-scale effect of granites

    More Information
    • Received Date: November 10, 2019
    • Available Online: December 07, 2022
    • A formulation method for variable radius proportional clump structure is proposed according to the particle flow method. The effects of mesoparameters and meso-structural characteristics of particle flow on the compressive and tensile properties of simulated rocks are investigated. A clump particle flow structure is constructed, which is suitable for the mechanical characteristics of granite. The reliability of clump structure with variable radius ratio and meso-mechanical parameters is verified. The particle flow models for deep caverns with different sizes are developed, and the scale effect of macro fractures of deep surrounding rock is evaluated. The research results show that the tensile compression ratios of ball and clump models are less sensitive to the changes of meso parameters, and the mechanical properties of variable radius proportional clump model are more sensitive to the changes of particle size and proportion. Using the clump models with different particle size ratios, the compressive and tensile strength curves and fracture modes of numerical simulations and experimental tests are investigated. A good compliance is observed between the numerical and experimental findings. In the small-scale particle model, the fracture zones of the surrounding rocks are mainly broken in local area. By increasing the particle model scale, the clear shear-slip fracture characteristics appear. Simulating the fracture properties by the particle flow model for deep surrounding rocks exhibits clear macro-scale effects.
    • [1]
      蒋明镜, 张宁, 申志福, 等. 含裂隙岩体单轴压缩裂纹扩展机制离散元分析[J]. 岩土力学, 2015, 36(11): 3293-3300, 3314. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511034.htm

      JIANG Ming-jing, ZHANG Ning, SHEN Zhi-fu, et al. DEM analyses of crack propagation in flawed rock mass under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36(11): 3293-3300, 3314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511034.htm
      [2]
      夏明, 赵崇斌. 簇平行黏结模型中微观参数对宏观参数影响的量纲研究[J]. 岩石力学与工程学报, 2014, 33(2): 327-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402014.htm

      XIA Ming, ZHAO Chong-bin. Dimensional analysis of effects of microscopic parameters on macroscopic parameters for clump parallel-bond model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 327-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402014.htm
      [3]
      胡波, 杨圣奇, 徐鹏, 等. 单裂隙砂岩蠕变模型参数时间尺度效应及颗粒流数值模拟研究[J]. 岩土工程学报, 2019, 41(5): 864-873. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905011.htm

      HU Bo, YANG Sheng-qi, XU Peng, et al. Time-scale effect of the creep model parameters and particle flow simulation of sandstone with a single crack[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 864-873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905011.htm
      [4]
      邓树新, 郑永来, 冯利坡, 等. 试验设计法在硬岩PFC3D模型细观参数标定中的应用[J]. 岩土工程学报, 2019, 41(4): 655-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904010.htm

      DENG Shu-xin, ZHENG Yong-lai, FENG Li-po, et al. Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 655-664. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904010.htm
      [5]
      BAHRANI N, KAISER P K. Estimation of confined peak strength of crack-damaged rocks[J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 309-326. doi: 10.1007/s00603-016-1110-1
      [6]
      SHI C, YANG W K, YANG J X, et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter, 2019, 21(2): 3801-3813.
      [7]
      丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报, 2015, 37(6): 1031-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506010.htm

      CONG Yu, WANG Zai-quan, ZHENG Ying-ren, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506010.htm
      [8]
      STAVROU A, MURPHY W. Quantifying the effects of scale and heterogeneity on the confined strength of micro-defected rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 131-143. doi: 10.1016/j.ijrmms.2018.01.019
      [9]
      孙超, 刘芳, 蒋明镜, 等. 岩石抗压强度的尺寸效应及端部约束的离散元数值模拟[J]. 岩石力学与工程学报, 2014, 33(增刊2): 3421-3428. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2006.htm

      SUN Chao, LIU Fang, JIANG Ming-jing, et al. Size effect of compression strength and end constraint of rocks by distinct element simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3421-3428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2006.htm
      [10]
      谢璨, 李树忱, 晏勤, 等. 不同尺寸裂隙岩石损伤破坏特性光弹性试验研究[J]. 岩土工程学报, 2018, 40(3): 568-575. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803029.htm

      XIE Can, LI Shu-chen, YAN Qin, et al. Photoelastic experiments on failure characteristics of fractured rock with different sizes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 568-575. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803029.htm
      [11]
      PENG J, LOUIS N Y, TEH C I. Effects of grain size-to- particle size ratio on micro-cracking behavior using a bonded-particle grain-based model[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 207-217.
      [12]
      陈庆发, 郑文师, 牛文静, 等. 裂隙岩体几何与力学尺寸效应的关联性研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2857-2870. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1027.htm

      CHEN Qing-fa, ZHENG Wen-shi, NIU Wen-jing, et al. Correlation of the geometrical and mechanical size effects of fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2857-2870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1027.htm
      [13]
      梁昌玉, 李晓, 吴树仁. 中低应变率加载条件下花岗岩尺寸效应的能量特征研究[J]. 岩土力学, 2016, 37(12): 3472-3480. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612016.htm

      LIANG Chang-yu, LI Xiao, WU Shu-ren. Research on energy characteristics of size effect of granite under low/intermediate strain rates[J]. Rock and Soil Mechanics, 2016, 37(12): 3472-3480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612016.htm
      [14]
      唐礼忠, 宋徉霖. 含非共面重叠型微裂隙类岩石试样单轴受压宏细观力学特性颗粒流模拟[J]. 岩石力学与工程学报, 2019, 38(11): 2161-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911002.htm

      TANG Li-zhong, SONG Yang-lin. Particle flow simulation of macro- and meso- mechanical properties of uniaxially compressed rock-like specimens with non-coplanar overlapping flaws[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2161-2171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911002.htm
      [15]
      CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010.
      [16]
      POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
      [17]
      YOON J S, ZANG A, STEPHANSSON O. Simulating fracture and friction of aue granite under confined asymmetric compressive test using clumped particle model[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 49: 68-83.
      [18]
      SHI C, LI D J, XU W Y, et al. Failure mechanism and stability analysis of the Zhenggang landslide in Yunnan Province of China using 3D particle flow code simulation[J]. Journal of Mountain Science, 2016, 13(5): 891-905.
    • Related Articles

      [1]Study on the evolution of critical state and constitutive modeling for calcareous sand under anisotropic consolidation paths[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241198
      [2]Thermal conductivity evolution of sand-clay mixtures under one-dimensional compression[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240309
      [3]CHEN Rong, WU Zhiyong, HAO Dongxue, GAO Yucong. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713-1722. DOI: 10.11779/CJGE20220647
      [4]WANG Wei-guang, YAO Zhi-hua, LI Wan, ZHANG Jian-hua. Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
      [5]WANG Gang, YANG Jun-jie, WANG Zhao-nan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. DOI: 10.11779/CJGE202108016
      [6]GAO Yan-bin, LIU Jia-dan. One-dimensional stress relaxation of cohesive soils and its relationship with secondary compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 49-52. DOI: 10.11779/CJGE2019S2013
      [7]RAO Chun-yi, ZHU Jian-feng, PAN Bin-jie, LIU Hao-xu, ZHOU Zhi-jun. One-dimensional compression model for solidified silt based on theory of disturbed state concept[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 173-176. DOI: 10.11779/CJGE2019S1044
      [8]LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
      [9]NIE Qing, WEI Wei, LUO Kai-tai, LIU En-long. Confined compression features and mathematical modeling of artificially structured soils with initial stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 774-778.
      [10]ZHANG Jiru, ZHU Jie, HUANG Wenjing. Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789.
    • Cited by

      Periodical cited type(12)

      1. 谢永晟,杨果岳,王阳,杨少光. 剪切速率对水泥胶结钙质砂强度及变形的影响. 湘潭大学学报(自然科学版). 2024(01): 83-91 .
      2. 陈军浩,张艳娥,王刚,王恒. 不同固结路径下钙质砂固结排水强度性状研究. 岩土力学. 2024(08): 2290-2298 .
      3. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 .
      4. 杨振杰,张凌凯. 北疆白砂岩力学特性及其微观机制试验研究. 水利水电科技进展. 2024(05): 94-102 .
      5. 刘鑫,李飒,尹福顺,姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究. 岩土工程学报. 2023(03): 590-598 . 本站查看
      6. 王欲敏,赵梦珍,梁旭之,李菁若,周启伟. 西南地区路用石灰岩粗集料矿物组成和物理力学性质的关联性分析. 土木工程学报. 2023(06): 136-144 .
      7. 蒋超,陈杰,蒋昌波,姚震,梁海,伍志元. 柱状珊瑚砂静水沉降试验研究. 海洋学报. 2023(04): 57-67 .
      8. 李钒,陈远中,廖洁,夏冰,樊科伟. 颗粒形状对钙质砂最终级配影响的试验研究. 河海大学学报(自然科学版). 2023(04): 41-45+71 .
      9. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 .
      10. 沈扬,马英豪,芮笑曦. 波浪荷载作用下饱和钙质砂孔压特性及累积损失能量试验研究. 岩土力学. 2023(08): 2195-2204 .
      11. 白思凯,杨超,刘建宏. 基于钙质砂形态参数的神经网络模式识别研究. 工业建筑. 2023(S1): 657-660+599 .
      12. 李洪成,曾荣,杨天圆,牛智有. 玉米籽粒冲击破碎特性试验研究. 农业工程学报. 2022(07): 29-37 .

      Other cited types(25)

    Catalog

      Article views (451) PDF downloads (288) Cited by(37)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return