• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LIU Xin, LI Sa, YIN Fushun, YAO Ting. Morphological characteristics of carbonate soil in South China Sea based on dynamic image technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 590-598. DOI: 10.11779/CJGE20220010
Citation: LIU Xin, LI Sa, YIN Fushun, YAO Ting. Morphological characteristics of carbonate soil in South China Sea based on dynamic image technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 590-598. DOI: 10.11779/CJGE20220010

Morphological characteristics of carbonate soil in South China Sea based on dynamic image technology

More Information
  • Received Date: January 02, 2022
  • Available Online: March 15, 2023
  • The particle morphology is an important microscopic characteristic that affects the physical and mechanical properties of granular soils. Carbonate soil particles have complex morphology due to special biogenesis. In order to study the morphological characteristics of the soil particles, the PartAn 3D particle dynamic image analyzer was used to test the particle shape of the carbonate soil with grain sizes of 0.5 ~ 20 mm from the South China Sea. The elongation, flatness, sphericity, roundness, angularity and convexity were used to quantitatively describe the morphological characteristics of the particles. The results show that the frequency distribution of the elongation, flatness, sphericity and roundness of carbonate soil particles in the South China Sea complies with the normal one, while the frequency distribution of the angularity and convexity complies with that of the power law. The particle shape of the carbonate soil is mostly blocky, and with the decrease of grain size, the soil particles become flatter and more regular in shape. Through investigating the effects of sample size on the results of particle shape quantification, it is suggested that the number of particles should be not less than 600 when using the arithmetic mean of shape descriptors to quantify the morphological characteristics of the uniformly graded carbonate soil. Finally, a comprehensive shape index which can fully describe the morphological characteristics of the carbonate soil particles is obtained with the aid of the principal component analysis method in statistics, and the relationship between this shape index and the maximum to minimum void ratio of the carbonate soil is established.
  • [1]
    刘鑫, 李飒, 刘小龙, 等. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2019, 41(9): 1773-1780. doi: 10.11779/CJGE201909024

    LIU Xin, LI Sa, LIU Xiaolong, et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. (in Chinese) doi: 10.11779/CJGE201909024
    [2]
    SHINOHARA K, OIDA M, GOLMAN B. Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder Technology, 2000, 107(1/2): 131-136.
    [3]
    SANTAMARINA J C, CHO G C. Soil behaviour: the role of particle shape[C]//Advances in Geotechnical Engineering: The Skempton Conference. London, U K: Thomas Telford Publishing, 2004: 604-617.
    [4]
    ROUSÉ P C, FANNIN R J, SHUTTLE D A. Influence of roundness on the void ratio and strength of uniform sand[J]. Géotechnique, 2008, 58(3): 227-231. doi: 10.1680/geot.2008.58.3.227
    [5]
    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
    [6]
    SARKAR D, GOUDARZY M, KÖNIG D. An interpretation of the influence of particle shape on the mechanical behavior of granular material[J]. Granular Matter, 2019, 21(3): 1-24.
    [7]
    陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392. doi: 10.3969/j.issn.1000-7598.2005.09.008

    CHEN Haiyang, WANG Ren, LI Jianguo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.09.008
    [8]
    王步雪岩, 孟庆山, 韦昌富, 等. 多投影面下珊瑚砂砾颗粒形貌量化试验研究[J]. 岩土力学, 2019, 40(10): 3871-3878. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910021.htm

    WANG Buxueyan, MENG Qingshan, WEI Changfu, et al. Quantitative experimental study of the morphology of coral sand and gravel particles under multiple projection surfaces[J]. Rock and Soil Mechanics, 2019, 40(10): 3871-3878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910021.htm
    [9]
    WANG X, WU Y, CUI J, et al. Shape characteristics of coral sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(10): 1-24. http://www.xueshufan.com/publication/3092935897
    [10]
    LI L Z, BEEMER R D, ISKANDER M. Granulometry of two marine calcareous sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020171. doi: 10.1061/(ASCE)GT.1943-5606.0002431
    [11]
    WEI H Z, ZHAO T, MENG Q S, et al. Quantifying the morphology of calcareous sands by dynamic image analysis[J]. International Journal of Geomechanics, 2020, 20(4): 04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640
    [12]
    孙越, 肖杨, 周伟, 等. 钙质砂和石英砂压缩下的颗粒破碎与形状演化[J]. 岩土工程学报, 2022, 44(6): 1061-1068. doi: 10.11779/CJGE202206010

    SUN Yue, XIAO Yang, ZHOU Wei, et al. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061-1068. (in Chinese) doi: 10.11779/CJGE202206010
    [13]
    马成昊, 朱长歧, 刘海峰, 等. 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108001.htm

    MA Chenghao, ZHU Changqi, LIU Haifeng, et al. State-of-the-art review of research on the particle shape of soil[J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108001.htm
    [14]
    LI L Z, ISKANDER M. Comparison of 2D and 3D dynamic image analysis for characterization of natural sands[J]. Engineering Geology, 2021, 290: 106052.
    [15]
    GUO Y L, MARKINE V, ZHANG X H, et al. Image analysis for morphology, rheology and degradation study of railway ballast: a review[J]. Transportation Geotechnics, 2019, 18: 173-211.
    [16]
    Standard Practice for Characterization of Particles: ASTM F1877—05(2010)[S]. West Conshohocken: ASTM International, 2010.
    [17]
    Representation of Results of Particle Size Analysis — Part 6: Descriptive and Quantitative Representation of Particle Shape and Morphology: ISO 9276—6[S]. ISO, 2008.
    [18]
    Standard Practice for Description and Identification of Soils (Visual-Manual Procedures): ASTM D2488—17e1[S]. ASTM International, 2017.
    [19]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [20]
    CETIN K O, ILGAC M. Probabilistic assessments of void ratio limits and their range for cohesionless soils[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106481.
    [21]
    LI L Z, ISKANDER M. Evaluation of roundness parameters in use for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021081.
    [22]
    PATRA C, SIVAKUGAN N, DAS B, et al. Correlations for relative density of clean sand with Median grain size and compaction energy[J]. International Journal of Geotechnical Engineering, 2010, 4(2): 195-203.
    [23]
    ZHENG J X, HRYCIW R D. Index void ratios of sands from their intrinsic properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 06016019.
    [24]
    HRYCIW R D, ZHENG J X, PENN R. An update of Robert M. Koerner's models for the packing densities of sands using image-based intrinsic soil properties[C]//Geosynthetics, Forging a Path to Bona Fide Engineering Materials. Chicago, Illinois. Reston, VA: American Society of Civil Engineers, 2016: 83-94.
    [25]
    CHANG C S, DENG Y B, MEIDANI M. A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles[J]. Engineering Geology, 2018, 237: 21-31.
  • Other Related Supplements

  • Cited by

    Periodical cited type(25)

    1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 .
    2. 胡颢,王超林,黄小龙,党爽,刘腾龙. 岩溶隧道对地下水环境影响分析及涌水量预测研究. 贵州大学学报(自然科学版). 2024(02): 103-109+124 .
    3. 于勇,刘文骏,傅鹤林,胡凯巽. 超高水压超大埋深组合工法水下隧道连接段泄水降压研究. 隧道建设(中英文). 2024(04): 663-672 .
    4. 樊浩博,陈宏文,赵东平,朱正国,赵梓宇,朱永全,高新强. 在役岩溶隧道衬砌水压分布及预警控制标准研究. 岩土力学. 2024(07): 2153-2166 .
    5. 魏福成,汪镇,周凤玺. 层状地质条件下注浆模型渗流场解析解. 科学技术与工程. 2024(29): 12723-12733 .
    6. 魏荣华,张康健,张志强. 铁路隧道深埋水沟防排水技术参数优化研究. 现代隧道技术. 2024(05): 183-192 .
    7. 雒少江,丁卫华,薛海斌,李玉波,严广艺,宋常贵,张东旭. 基于宏观地质模型分类的深埋输水隧洞衬砌外水压力研究. 中国农村水利水电. 2024(12): 177-184+192 .
    8. 戚海棠,任旭华,张继勋. 基于井流理论的隧洞外水压力解析计算方法研究. 水力发电. 2023(04): 29-35+74 .
    9. 黄威,孙云,张建平,王耘梓,张延杰,徐卫亚. 深埋隧洞高外水压力研究进展. 三峡大学学报(自然科学版). 2023(05): 1-11 .
    10. 雷刚,杨凌武,胡明华,施芸,盛磊. 基于实时扫描的隧道自动开槽机器人电气系统设计. 制造业自动化. 2023(11): 107-110 .
    11. 王新越,王如宾,王丹,向天兵,王鹏,黄威,张建平,徐卫亚. 滇中引水松林隧洞高外水压力作用数值模拟分析. 隧道与地下工程灾害防治. 2023(04): 72-80 .
    12. 傅鹤林,安鹏涛,成国文,王仁健,李鲒,余小辉. 考虑注浆圈与复合衬砌时体外排水方式设计. 湖南大学学报(自然科学版). 2022(01): 174-182 .
    13. 傅鹤林,安鹏涛,成国文,李鲒,余小辉,陈龙. 富水区隧道环向盲管间距优化分析. 现代隧道技术. 2022(02): 20-27 .
    14. 黄世光,杨艳娜,范全忠,黄靖宇,余磊. 隧道堵水限排设计参数变化规律试验研究. 现代隧道技术. 2022(03): 201-210 .
    15. 任世林. 四线临海隧道开挖渗流演变及参数影响分析. 铁道科学与工程学报. 2022(07): 1985-1996 .
    16. 高国庆,齐国庆,陈仲达,刘剑锋. 基于GMS的红崖山隧道渗流场分析与涌水量预测. 水利与建筑工程学报. 2022(04): 142-148+211 .
    17. 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验. 隧道与地下工程灾害防治. 2022(03): 77-91 .
    18. 黄文华,张云. 基于浆液扩散的软弱围岩隧道注浆加固效果研究. 公路. 2021(08): 355-359 .
    19. 刘世伟,赵书争,付迪,赵强,朱泽奇. 长期渗漏水条件下海陆相浅埋盾构隧道隧顶水土荷载计算. 岩石力学与工程学报. 2021(10): 2149-2160 .
    20. 袁鸿鹄,刘勇,顾小明,张琦伟,李宏恩,孙洪升,杨良权. 冬奥会综合管廊绿色减排数值模拟分析. 水利水电技术(中英文). 2021(S2): 326-331 .
    21. 李林毅,阳军生,王树英,包德勇,高超. 体外排水方式在隧道工程中的研究及应用. 铁道学报. 2020(10): 118-126 .
    22. 张进. 富水环境下隧道地下水限量排放的衬砌外水压力分析. 四川建筑. 2020(05): 96-98+102 .
    23. 和晓楠,周晓敏,郭小红,徐衍,马文著. 深埋隧道注浆加固围岩非达西渗流场及应力场解析. 中国公路学报. 2020(12): 200-211 .
    24. 杨栋. 松散区盾构隧道注浆控制技术研究. 现代交通技术. 2020(06): 30-34 .
    25. 关振长,任璐瑶,何亚军,胡宏林. 山岭隧道渗流及衬砌等效渗透系数的实用计算. 水利与建筑工程学报. 2020(06): 52-56 .

    Other cited types(20)

Catalog

    Article views (430) PDF downloads (109) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return