Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于三轴不排水有效应力路径的结构性剑桥模型的修正研究

加瑞, 李逸群, 雷华阳, 姜宇轩

加瑞, 李逸群, 雷华阳, 姜宇轩. 基于三轴不排水有效应力路径的结构性剑桥模型的修正研究[J]. 岩土工程学报, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243
引用本文: 加瑞, 李逸群, 雷华阳, 姜宇轩. 基于三轴不排水有效应力路径的结构性剑桥模型的修正研究[J]. 岩土工程学报, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243
JIA Rui, LI Yiqun, LEI Huayang, JIANG Yuxuan. Modification of structured Cam-clay model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243
Citation: JIA Rui, LI Yiqun, LEI Huayang, JIANG Yuxuan. Modification of structured Cam-clay model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243

基于三轴不排水有效应力路径的结构性剑桥模型的修正研究  English Version

基金项目: 

国家自然科学基金项目 52378362

天津市科技计划项 21JCYBJC00380

详细信息
    作者简介:

    加瑞(1982—),男,博士,副教授,主要从事岩土工程和地下工程方面的研究工作。E-mail: jiarui@tju.edu.cn

  • 中图分类号: TU43

Modification of structured Cam-clay model based on triaxial undrained effective stress path

  • 摘要: 室内外试验和工程实践都表明天然沉积黏土具有一定的结构性,因此建立结构性本构模型对准确预测天然黏土的力学响应和解决实际岩土工程问题具有重要意义。首先,基于结构性黏土的三轴固结不排水试验的有效应力路径对结构性剑桥(SCC)模型进行了两点改进:①对附加孔隙比Δe的计算公式进行了修正,可以准确模拟结构性黏土超过临界状态线后的有效应力路径;②考虑了屈服面内的塑性即亚屈服特性,可以较好地模拟屈服面内的有效应力路径。然后,利用修正结构性剑桥(MSCC)模型对结构性黏土的侧限压缩试验、三轴固结不排水和三轴固结排水试验进行了模拟计算,并与试验结果和SCC模型的计算结果进行了对比分析,结果表明MSCC模型可以更好地模拟结构性黏土的三轴不排水有效应力路径以及侧限压缩和三轴固结排水试验的应力应变曲线。最后,对MSCC模型中的参数β(屈服面内塑性变形参数)、p'yi(初始结构屈服应力)、Δei(初始附加孔隙比)、b(结构破损速率)、γ(剪切引起结构破损的参数)和ω(反映结构性对塑性流动准则的影响)进行了参数敏感性分析,结果表明参数β影响结构性黏土屈服面内的有效应力路径,参数p'yi影响峰值强度,参数Δei影响残余强度,参数bγ影响峰值后的强度衰减速率,参数ω影响强度开始衰减时的偏应变大小。
    Abstract: Both laboratory and in-situ tests and engineering practices show that naturally sedimented clays have a specific structure. Therefore, establishing a structural constitutive model is of great significance in accurate predicting the mechanical responses of natural clays and solving practical geotechnical engineering problems. Firstly, based on the effective stress path of the consolidated undrained triaxial tests on structured clay, two improvements are made to the structured Cam-clay (SCC) model: (1) The formula for calculating the additional void ratio Δe is modified, which can accurately simulate the effective stress path of the structured clay beyond the critical state line. (2) Considering the plasticity in the yield surface, i.e., subyielding characteristic, the effective stress path in the yield surface can be well simulated. Then, the modified structured Cam-clay (MSCC) model is used to simulate the confined compression tests, the consolidated undrained and drained triaxial tests on the structured clay. The calculated results are compared with the experimental ones and those by the SCC model. The results show that the MSCC model can better simulate the triaxial undrained effective stress path and stress-strain curves of the confined compression and consolidated drained triaxial tests on the structured clay. Finally, the sensitivity analyses of parameters β (plastic deformation parameter in yield surface), p'yi (initial structural yield stress), Δei (initial additional void ratio), b (structure degradation rate), γ (shear-induced structure degradation parameter) and ω (reflecting the influences of soil structure on plastic flow criterion) in the MSCC model are carried out. The results show that parameter β affects the effective stress path in the yield surface of structured clay, parameter p'yi affects peak strength, parameter Δei affects the residual strength, parameters b and γ affect the strength degradation rate after the peak value, and parameter ω affects the magnitude of deviatoric strain when the strength begins to degrade.
  • 图  1   重塑与结构性黏土的等向压缩曲线

    Figure  1.   Isotropic compression curves of reconstituted and structured clays

    图  2   结构性黏土的结构屈服面和重塑黏土的固有屈服面

    Figure  2.   Structural yield surface of structured clay and intrinsic yield surface of reconstituted clay

    图  3   结构性黏土的三轴不排水有效应力路径

    Figure  3.   Triaxial undrained effective stress paths of structured clay

    图  4   侧限压缩试验e-lnp'结果对比

    Figure  4.   Comparison of e-lnp' results of confined compression tests

    图  5   轻超固结黏土三轴固结不排水试验结果对比

    Figure  5.   Comparison of consolidated undrained triaxial test results of lightly overconsolidated clay

    图  6   重超固结黏土三轴固结不排水试验结果对比

    Figure  6.   Comparison of consolidated undrained triaxial test results of heavily overconsolidated clay

    图  7   轻超固结黏土三轴固结排水试验结果对比

    Figure  7.   Comparison of consolidated drained triaxial test results of lightly overconsolidated clay

    图  8   重超固结黏土三轴固结排水试验结果对比

    Figure  8.   Comparison of consolidated drained triaxial test results of heavily overconsolidated clay

    图  9   参数β对计算结果的影响

    Figure  9.   Effects of parameter β on calculated results

    图  10   参数p'yi对计算结果的影响

    Figure  10.   Effects of parameter p'yi on calculated results

    图  11   参数Δei对计算结果的影响

    Figure  11.   Effects of parameter Δei on calculated results

    图  12   参数b对计算结果的影响

    Figure  12.   Effects of parameter b on calculated results

    图  13   参数γ对计算结果的影响

    Figure  13.   Effects of parameter γ on calculated results

    图  14   参数ω对计算结果的影响

    Figure  14.   Effects of parameter ω on calculated results

    表  1   侧限压缩试验中结构性黏土的参数

    Table  1   Parameters of structured clay in confined compression tests

    M λ κ eIC ν b Δei ω γ β
    1.5 0.505 0.02 5.383 0.3 0.7 1.1 1 0.5 25.25
    下载: 导出CSV

    表  2   三轴固结不排水试验中结构性黏土的参数

    Table  2   Parameters of structured clay in consolidated undrained triaxial tests

    土样 M λ κ eIC ν b Δei ω γ β
    轻超固结人工制备结构性黏土 1.21 0.42 0.03 3.85 0.25 1 0.15 1 0.55 3
    重超固结天然沉积结构性黏土 1.28 0.15 0.0377 2.91 0.25 1 0.22 1 0.08 5
    下载: 导出CSV

    表  3   三轴固结排水试验中结构性黏土的参数

    Table  3   Parameters of structured clay in consolidated drained triaxial tests

    土样 M λ κ eIC ν b Δei ω γ β
    轻超固结CorinthMarl结构性黏土 1.38 0.2 0.08 3.7 0.33 1 0.12 1 0.8 5
    重超固结La Biche结构性黏土 1.4 0.05 0.011 0.668 0.35 0.01 0.045 1 16 10
    下载: 导出CSV

    表  4   MSCC模型参数

    Table  4   Parameters of MSCC model

    M λ κ eIC ν β p'yi /kPa Δei b γ ω
    1.28 0.355 0.0477 2.91 0.25 7.44 57.5 0.22 1 0.5 1
    下载: 导出CSV
  • [1] 沈珠江. 土体结构性的数学模型: 21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. http://cge.nhri.cn/article/id/8998

    SHEN Zhujiang. Mathematic model of structure—The key Problem for soil mechanics in 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese) http://cge.nhri.cn/article/id/8998

    [2] 沈珠江. 结构性黏土的堆砌体模型[J]. 岩土力学, 2000, 21(1): 1-4.

    SHEN Zhujiang. A masonry model for structured clays[J]. Rock and Soil Mechanics, 2000, 21(1): 1-4. (in Chinese)

    [3] 刘恩龙, 罗开泰, 张树祎. 初始应力各向异性结构性土的二元介质模型[J]. 岩土力学, 2013, 34(11): 3103-3109.

    LIU Enlong, LUO Kaitai, ZHANG Shuyi. Binary medium model for structured soils with initial stress-induced anisotropy[J]. Rock and Soil Mechanics, 2013, 34(11): 3103-3109. (in Chinese)

    [4]

    OURIA A. Disturbed state concept–based constitutive model for structured soils[J]. International Journal of Geomechanics, 2017, 17(7): 04017008. doi: 10.1061/(ASCE)GM.1943-5622.0000883

    [5]

    ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000, 40(2): 99-110. doi: 10.3208/sandf.40.2_99

    [6] 王立忠, 沈恺伦. K0固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. http://cge.nhri.cn/article/id/12452

    WANG Lizhong, SHEN Kailun. A constitutive model of K0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese) http://cge.nhri.cn/article/id/12452

    [7]

    LU Y, JIANG Y, ZHU W X, et al. Unified description of different soils based on the superloading and subloading concepts[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1): 239-254. doi: 10.1016/j.jrmge.2022.02.015

    [8]

    ROUAINIA M, MUIR WOOD D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164. doi: 10.1680/geot.2000.50.2.153

    [9]

    KAVVADAS M, AMOROSI A. A constitutive model for structured soils[J]. Géotechnique, 2000, 50(3): 263-273. doi: 10.1680/geot.2000.50.3.263

    [10]

    PARK D S, KUTTER B L. Sensitive bounding surface constitutive model for structured clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(14): 1968-1987. doi: 10.1002/nag.2507

    [11]

    YIN Z Y, HATTAB M, HICHER P Y. Multiscale modeling of a sensitive marine clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(15): 1682-1702. doi: 10.1002/nag.977

    [12] 祝恩阳, 姚仰平. 结构性土UH模型[J]. 岩土力学, 2015, 36(11): 3101-3110, 3228.

    ZHU Enyang, YAO Yangping. A UH constitutive model for structured soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3101-3110, 3228. (in Chinese)

    [13]

    TAIEBAT M, DAFALIAS Y F, PEEK R. A destructuration theory and its application to SANICLAY model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(10): 1009-1040. doi: 10.1002/nag.841

    [14]

    LIU M D, CARTER J P. A structured Cam Clay model[J]. Canadian Geotechnical Journal, 2002, 39: 1313-1332. doi: 10.1139/t02-069

    [15]

    CARTER J P, LIU M D. Review of the structured cam clay model[C]//Soil Constitutive Models. Austin, Texas, USA. Reston, VA: American Society of Civil Engineers, 2005: 128: 99-132.

    [16]

    SUEBSUK J, HORPIBULSUK S, LIU M D. Modified Structured Cam Clay: a generalised critical state model for destructured, naturally structured and artificially structured clays[J]. Computers and Geotechnics, 2010, 37(7/8): 956-968.

    [17]

    SUEBSUK J, HORPIBULSUK S, LIU M D. Compression and shear responses of structured clays during subyielding[J]. Geomechanics and Engineering, 2019, 18(2): 121-131. http://www.researchgate.net/publication/333852828_Compression_and_shear_responses_of_structured_clays_during_subyielding

    [18]

    BURGHIGNOLI A, MILIZAANO S, SOCCODATO F M. The effect of bond degradation in cemented clayey soils[C]// Proceedings of the Symposium on Geotechnical Engineering of Hard Soils-Soft Rocks. Balkema, 1998: 465-472.

    [19]

    NGUYEN L, FATAHI B, KHABBAZ H. Development of a constitutive model to predict the behavior of cement-treated clay during cementation degradation: C3 model[J]. International Journal of Geomechanics, 2017, 17(7): 04017010. doi: 10.1061/(ASCE)GM.1943-5622.0000863

    [20]

    ADACHI T, OKA F, HIRATA T, et al. Stress-strain behavior and yielding characteristics of eastern Osaka clay[J]. Soils and Foundations, 1995, 35(3): 1-13. doi: 10.3208/sandf.35.1

    [21]

    ANAGNOSTOPOULOS A G, KALTEZIOTIS N, TSIAMBAOS G K, et al. Geotechnical properties of the Corinth canal marls[J]. Geotechnical & Geological Engineering, 1991, 9(1): 1-26.

    [22]

    WONG R. Swelling and softening behaviour of La Biche shale[J]. Canadian Geotechnical Journal, 1998, 35(2): 206-221. doi: 10.1139/t97-087

  • 期刊类型引用(3)

    1. 李飞龙,姜昌山,蔡国庆,余虔,韩进宝,张合青. 飞机滑行荷载对水泥混凝土道面及下穿通道的动力响应影响. 土木工程学报. 2024(S2): 80-87 . 百度学术
    2. 黄之懿,游庆龙,马靖莲,田帅团,赵志,黄文旭. 飞机轮载作用下沥青道面荷载影响范围分析. 中国科技论文. 2023(08): 890-896+904 . 百度学术
    3. 邓友生,姚志刚,邓明科,李明,李龙,肇慧玲. 温度-荷载作用下新旧混凝土道面接缝力学性能. 西安建筑科技大学学报(自然科学版). 2022(06): 899-905 . 百度学术

    其他类型引用(8)

图(14)  /  表(4)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  40
  • PDF下载量:  117
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-12-19
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回