Citation: | JIA Rui, LI Yiqun, LEI Huayang, JIANG Yuxuan. Modification of structured Cam-clay model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243 |
[1] |
沈珠江. 土体结构性的数学模型: 21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. http://cge.nhri.cn/article/id/8998
SHEN Zhujiang. Mathematic model of structure—The key Problem for soil mechanics in 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese) http://cge.nhri.cn/article/id/8998
|
[2] |
沈珠江. 结构性黏土的堆砌体模型[J]. 岩土力学, 2000, 21(1): 1-4.
SHEN Zhujiang. A masonry model for structured clays[J]. Rock and Soil Mechanics, 2000, 21(1): 1-4. (in Chinese)
|
[3] |
刘恩龙, 罗开泰, 张树祎. 初始应力各向异性结构性土的二元介质模型[J]. 岩土力学, 2013, 34(11): 3103-3109.
LIU Enlong, LUO Kaitai, ZHANG Shuyi. Binary medium model for structured soils with initial stress-induced anisotropy[J]. Rock and Soil Mechanics, 2013, 34(11): 3103-3109. (in Chinese)
|
[4] |
OURIA A. Disturbed state concept–based constitutive model for structured soils[J]. International Journal of Geomechanics, 2017, 17(7): 04017008. doi: 10.1061/(ASCE)GM.1943-5622.0000883
|
[5] |
ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000, 40(2): 99-110. doi: 10.3208/sandf.40.2_99
|
[6] |
王立忠, 沈恺伦. K0固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. http://cge.nhri.cn/article/id/12452
WANG Lizhong, SHEN Kailun. A constitutive model of K0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese) http://cge.nhri.cn/article/id/12452
|
[7] |
LU Y, JIANG Y, ZHU W X, et al. Unified description of different soils based on the superloading and subloading concepts[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1): 239-254. doi: 10.1016/j.jrmge.2022.02.015
|
[8] |
ROUAINIA M, MUIR WOOD D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164. doi: 10.1680/geot.2000.50.2.153
|
[9] |
KAVVADAS M, AMOROSI A. A constitutive model for structured soils[J]. Géotechnique, 2000, 50(3): 263-273. doi: 10.1680/geot.2000.50.3.263
|
[10] |
PARK D S, KUTTER B L. Sensitive bounding surface constitutive model for structured clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(14): 1968-1987. doi: 10.1002/nag.2507
|
[11] |
YIN Z Y, HATTAB M, HICHER P Y. Multiscale modeling of a sensitive marine clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(15): 1682-1702. doi: 10.1002/nag.977
|
[12] |
祝恩阳, 姚仰平. 结构性土UH模型[J]. 岩土力学, 2015, 36(11): 3101-3110, 3228.
ZHU Enyang, YAO Yangping. A UH constitutive model for structured soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3101-3110, 3228. (in Chinese)
|
[13] |
TAIEBAT M, DAFALIAS Y F, PEEK R. A destructuration theory and its application to SANICLAY model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(10): 1009-1040. doi: 10.1002/nag.841
|
[14] |
LIU M D, CARTER J P. A structured Cam Clay model[J]. Canadian Geotechnical Journal, 2002, 39: 1313-1332. doi: 10.1139/t02-069
|
[15] |
CARTER J P, LIU M D. Review of the structured cam clay model[C]//Soil Constitutive Models. Austin, Texas, USA. Reston, VA: American Society of Civil Engineers, 2005: 128: 99-132.
|
[16] |
SUEBSUK J, HORPIBULSUK S, LIU M D. Modified Structured Cam Clay: a generalised critical state model for destructured, naturally structured and artificially structured clays[J]. Computers and Geotechnics, 2010, 37(7/8): 956-968.
|
[17] |
SUEBSUK J, HORPIBULSUK S, LIU M D. Compression and shear responses of structured clays during subyielding[J]. Geomechanics and Engineering, 2019, 18(2): 121-131. http://www.researchgate.net/publication/333852828_Compression_and_shear_responses_of_structured_clays_during_subyielding
|
[18] |
BURGHIGNOLI A, MILIZAANO S, SOCCODATO F M. The effect of bond degradation in cemented clayey soils[C]// Proceedings of the Symposium on Geotechnical Engineering of Hard Soils-Soft Rocks. Balkema, 1998: 465-472.
|
[19] |
NGUYEN L, FATAHI B, KHABBAZ H. Development of a constitutive model to predict the behavior of cement-treated clay during cementation degradation: C3 model[J]. International Journal of Geomechanics, 2017, 17(7): 04017010. doi: 10.1061/(ASCE)GM.1943-5622.0000863
|
[20] |
ADACHI T, OKA F, HIRATA T, et al. Stress-strain behavior and yielding characteristics of eastern Osaka clay[J]. Soils and Foundations, 1995, 35(3): 1-13. doi: 10.3208/sandf.35.1
|
[21] |
ANAGNOSTOPOULOS A G, KALTEZIOTIS N, TSIAMBAOS G K, et al. Geotechnical properties of the Corinth canal marls[J]. Geotechnical & Geological Engineering, 1991, 9(1): 1-26.
|
[22] |
WONG R. Swelling and softening behaviour of La Biche shale[J]. Canadian Geotechnical Journal, 1998, 35(2): 206-221. doi: 10.1139/t97-087
|
[1] | LIU Shuang, LIU Hanlong, XIAO Yang. Soil-water characteristic curve considering temperature and void ratio under capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253 |
[2] | GAO You, SUN De-an, ZHANG Jun-ran, LUO Ting. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191-2196. DOI: 10.11779/CJGE201912003 |
[3] | YE Yun-xue, ZOU Wei-lie, HAN Zhong, LIU Xiao-wen. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. DOI: 10.11779/CJGE201905016 |
[4] | YE Yun-xue, ZOU Wei-lie, YUAN Fei, LIU Jia-guo. Predicating soil-water characteristic curves of soils with different initial void ratios based on a pedotransfer function[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2305-2311. DOI: 10.11779/CJGE201812019 |
[5] | WU Qi, CHEN Guo-xing, ZHU Yu-meng, ZHOU Zheng-long, ZHOU Yan-guo. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019 |
[6] | LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021 |
[7] | ZOU Wei-lie, WANG Xie-qun, LUO Fang-de, ZHANG Jun-feng, YE Yun-xue, HU Zhong-wei. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. DOI: 10.11779/CJGE201709020 |
[8] | MA Shao-kun, HUANG Yan-zhen, CHEN Xin, JIANG Jie, SHAO Yu. Influence of excavation on adjacent rigid-flexible piles considering change of void ratio coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 140-145. DOI: 10.11779/CJGE2014S2024 |
[9] | CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004 |
[10] | MA Shao-kun<sup>1, 2, 3</sup>, SHAO Yu<sup>2, 3</sup>, HUANG Yan-zhen<sup>2, 3</sup>. Deformation of deep foundation pits due to excavation considering change of void ratio and permeability coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 940-944. |
1. |
冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 .
![]() | |
2. |
胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 .
![]() | |
3. |
唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 .
![]() | |
4. |
刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 .
![]() | |
5. |
喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 .
![]() | |
6. |
张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 .
![]() | |
7. |
刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 .
![]() | |
8. |
程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 .
![]() | |
9. |
刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 .
![]() | |
10. |
张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 .
![]() | |
11. |
薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 .
![]() | |
12. |
刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 .
![]() | |
13. |
刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 .
![]() | |
14. |
方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 .
![]() | |
15. |
蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 .
![]() | |
16. |
赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 .
![]() | |
17. |
马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 .
![]() | |
18. |
刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 .
![]() | |
19. |
马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 .
![]() | |
20. |
吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
![]() | |
21. |
关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 .
![]() | |
22. |
孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 .
![]() | |
23. |
邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 .
![]() | |
24. |
王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
![]() | |
25. |
王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
![]() | |
26. |
张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 .
![]() | |
27. |
陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 .
![]() |