Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

低应力和湿化路径下膨胀土的力学行为与本构模拟

周葆春, 江星澐, 马全国, 单丽霞, 王江伟, 李颖, 易先达, 孔令伟

周葆春, 江星澐, 马全国, 单丽霞, 王江伟, 李颖, 易先达, 孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟[J]. 岩土工程学报, 2025, 47(4): 695-704. DOI: 10.11779/CJGE20240079
引用本文: 周葆春, 江星澐, 马全国, 单丽霞, 王江伟, 李颖, 易先达, 孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟[J]. 岩土工程学报, 2025, 47(4): 695-704. DOI: 10.11779/CJGE20240079
ZHOU Baochun, JIANG Xingyun, MA Quanguo, SHAN Lixia, WANG Jiangwei, LI Ying, YI Xianda, KONG Lingwei. Mechanical behavior and constitutive modelling of expansive soils under conditions of wetting and low confining stress[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 695-704. DOI: 10.11779/CJGE20240079
Citation: ZHOU Baochun, JIANG Xingyun, MA Quanguo, SHAN Lixia, WANG Jiangwei, LI Ying, YI Xianda, KONG Lingwei. Mechanical behavior and constitutive modelling of expansive soils under conditions of wetting and low confining stress[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 695-704. DOI: 10.11779/CJGE20240079

低应力和湿化路径下膨胀土的力学行为与本构模拟  English Version

基金项目: 

国家自然科学基金项目 11772290

国家自然科学基金项目 51009118

详细信息
    作者简介:

    周葆春(1978—),男,教授,主要从事非饱和土与特殊土力学及工程研究。E-mail: zhoubc@xynu.edu.cn

  • 中图分类号: TU443

Mechanical behavior and constitutive modelling of expansive soils under conditions of wetting and low confining stress

  • 摘要: 膨胀土典型变形与破坏现象通常发生在低应力和湿化路径共同作用下,有必要深入研究从非饱和到饱和、从湿化到破坏的膨胀土力学行为及其湿载耦合效应规律。为此,以双压力室非饱和土三轴试验系统、Fredlund土水特征曲线仪为主要平台,开展系统的控制吸力的湿载耦合试验,历时近800 d,获得了低应力和湿化路径下荆门黄褐色中膨胀土持水、变形、破坏等力学行为规律。在此基础上,采用Barcelona basic model描述其湿载共同作用下的应力-应变-强度行为,采用van Genuchten模型描述其非饱和渗流行为。结合10 a来该土样的其它试验结果,标定了低应力和湿化路径下荆门黄褐色中膨胀土完整的13个BBM参数以及VG模型参数。本构模拟结果表明上述模型与参数能够较好再现低应力和湿化路径下该膨胀土的力学行为。
    Abstract: Typical deformation and failure of expansive soils usually occur under conditions of wetting and low confining stress. However, the mechanisms of coupling between mechanical and hydrological behaviors under those conditions are still obscure. Therefore, the soil water retention, volume change and strength behavior of expansive soils are investigated through systematically designed suction-controlled hydro-mechanical coupled tests under varying saturation conditions along wetting path. The test program involves with the instruments including the double-cell unsaturated soil triaxial test system and the Fredlund soil water characteristic devices. The tests last almost 800 days, and the soil water retention, volume change, and strength behavior of Jingmen medium swelling soil under conditions of wetting and low confining stress are acquired. The Barcelona basic model is used to describe the unsaturated stress-strain-strength behavior under those conditions. The van Genuchten model is used to describe the unsaturated seepage process. Combined with the other test results of the soil over the past 10 years, the complete 13 BBM parameters and VG model parameters of Jingmen medium swelling soil under those conditions are calibrated. The constitutive modelling shows that the above models and parameters can reproduce the mechanical behavior of the soil under conditions of wetting and low confining stress effectively. The aim of this study is to improve the prediction capability of the related expansive soil problems, e.g., rainfall-induced landslides and deformations of pavement.
  • 致谢: 感谢信阳师范大学建筑与土木工程学院已毕业的硕士研究生赵鑫鑫、郎梦婷、李政在三轴试验过程中所做的工作。感谢北京双杰特科技有限公司杜基俊工程师在试验过程中给予的技术支持。
  • 图  1   非饱和土三轴试验系统

    Figure  1.   Triaxial test system for unsaturated soils

    图  2   非饱和三轴试验吸力-应力路径

    Figure  2.   Suction-stress path of triaxial tests on unsaturated soils

    图  3   控制吸力吸湿阶段进水量-体积膨胀量-时间关系

    Figure  3.   Water inflow-volumetric expansion-time relationship of specimens during stages of suction-controlled wetting

    图  4   吸湿过程中含水率-孔隙比-吸力关系

    Figure  4.   Water content-void ratio-equilibrium suction relationship of specimens during wetting

    图  5   剪切过程中试样水量变化-体积变化-饱和度-轴向应变关系

    Figure  5.   Water inflow/outflow-volume change-saturation-axial strain relationship of specimens during shearing

    图  6   剪切过程中试样偏应力-体应变-轴向应变关系

    Figure  6.   Deviatoric stress-volumetric strain-axial strain relationship of specimens during shearing

    图  7   非饱和三轴压缩试验结束后的试样

    Figure  7.   Soil specimens after unsaturated triaxial compression tests

    图  8   控制吸力吸湿阶段进水量-时间关系Hydrus数值模拟

    Figure  8.   Hydrus simulation of water inflow-time relationship of specimens during stages of suction-controlled wetting

    图  9   剪切过程中试样偏应力-体应变-轴向应变关系的BBM再现结果

    Figure  9.   Reproduced results by BBM for deviatoric stress-volumetric strain-axial strain relationship of specimens during shearing

    图  10   α对BBM再现结果的影响

    Figure  10.   Effects of α on reproduced results by BBM

    表  1   试验用土的物理性质指标

    Table  1   Physical property indices of test soil

    相对质量密度Gs 液限/% 塑限/% 塑性指数 USCS定名 比表面积/(m2·g-1) 阳离子交换量/(mmol·kg-1) 标准吸湿含水率/% 自由膨胀率/%
    2.75 63 26 37 CH 236.5 309 7.3 75
    下载: 导出CSV

    表  2   试验用土的颗粒组成

    Table  2   Particle component of test soil 单位: %

    > 0.075 mm 0.005~0.075 mm 0.002~0.005 mm < 0.002 mm
    2.1 47.4 21.5 29.0
    下载: 导出CSV

    表  3   试验用土的矿物成分

    Table  3   Mineral composition of test soil 单位: %

    石英 钾长石 斜长石 铁白云石 重晶石 高岭石 伊利石 绿泥石 伊/蒙混层
    45.6 3.2 5.6 0.5 2.5 0.5 7.0 0.4 34.6
    下载: 导出CSV

    表  4   试验用土的阳离子质量摩尔浓度

    Table  4   Mass molarity of cation of test soil 单位: mmol/kg

    Na+ K+ Ca2+ Mg2+
    6.8 6.4 85.2 25.4
    下载: 导出CSV

    表  5   制样控制指标及制样完成后的物理性质指标

    Table  5   Controlling indices of specimen preparation and physical property parameters of specimens

    压实度/% 重力含水率w/% 干密度/(g·cm-3) 饱和度Sr/% 孔隙比e
    80 17.0 1.49 55.1 0.848
    下载: 导出CSV

    表  6   吸湿阶段三轴试样含水率-孔隙比-净围压-吸力关系

    Table  6   Water content-void ratio-net confining pressure-equilibrium suction relationship of unsaturated triaxial specimens during stages of suction-controlled wetting

    吸力/kPa σ3-ua=10 kPa σ3-ua=25 kPa σ3-ua=50 kPa
    w/% e Sr/% w/% e Sr/% w/% e Sr/%
    80 24.5 1.000 67.4 24.4 0.993 67.6 23.8 0.960 68.2
    40 26.1 1.031 69.6 25.9 1.023 69.6 25.6 0.988 71.3
    10 29.3 1.093 73.7 29.1 1.085 73.8 28.8 1.041 76.1
    下载: 导出CSV

    表  7   吸湿阶段的SWCC

    Table  7   SWCCs during wetting

    吸力/% w /% e Sr/%
    1000 19.7 0.897 60.4
    500 21.1 0.925 62.7
    200 23.3 0.972 65.9
    100 25.1 1.022 67.5
    80 25.8 1.049 67.6
    40 27.2 1.062 70.4
    10 31.0 1.111 76.7
    0 39.7 1.151 94.9
    下载: 导出CSV

    表  8   吸湿阶段结束后三轴试样体积质量参数

    Table  8   Volume and mass parameters of triaxial specimens after wetting

    净围压/kPa 干土质量/g 试样质量/g 试样高度/mm 试样体积/cm3
    10 144.334 186.624 85.71 109.85
    25 143.968 185.863 85.36 109.15
    50 144.433 186.030 84.64 107.20
    下载: 导出CSV

    表  9   破坏应力点及其物性指标

    Table  9   Stress values and indices to physical property of failure points

    (uauw)/kPa (σ3ua)/kPa (σ1σ3)f/kPa w/% e Sr/%
    10 10 49.2 29.9 1.030 80.0
    10 25 67.3 29.6 1.020 79.7
    10 50 95.8 28.8 0.976 81.2
    下载: 导出CSV

    表  10   BBM中符号定义与参数取值

    Table  10   Description of symbols in BBM and model parameters

    符号 符号定义 参数取值
    εevp 净平均正应力相关弹性体应变
    εevs 吸力相关弹性体应变
    εpvp 净平均正应力相关塑性体应变
    εpvs 吸力相关塑性体应变
    εes 弹性偏应变
    εps 塑性偏应变
    p 净平均正应力,(σ1+2σ3)/3-ua
    q 偏应力(广义剪应力),σ1-σ3
    s 吸力,ua-uw
    ν 比体积,1+e
    e 孔隙比
    N(s) 与吸力相关的p = pc下比体积ν
    N(0) 饱和状态p = pc下比体积ν
    λ(s) 与吸力相关的净平均正应力对数硬化模量
    p0 与吸力相关的先期固结压力
    λ(0) 饱和净平均正应力对数硬化模量 0.0242
    κ 净平均正应力等向膨胀指数 0.0186
    r 净平均正应力对数硬化模量相关参数 0.42
    β 净平均正应力对数硬化模量相关参数 0.009
    p0* 饱和先期固结压力 8 kPa
    λs 吸力对数硬化模量 0.055
    κs 吸力等向膨胀指数 0.039
    s0 吸力硬化参数 38.3 kPa
    pc 参考应力 4 kPa
    G 剪切模量 5 MPa
    M 临界状态有效应力比 0.84
    k 黏聚力随吸力变化的相关参数 3.2
    α 流动法则相关参数 3.7
    pat 大气压力 101.3 kPa
    下载: 导出CSV
  • [1] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1-15. http://cge.nhri.cn/cn/article/id/11325

    BAO Chenggang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1-15. (in Chinese) http://cge.nhri.cn/cn/article/id/11325

    [2] 孔令伟, 陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报, 2012, 45(5): 141-161.

    KONG Lingwei, CHEN Zhenghan. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5): 141-161. (in Chinese)

    [3] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. doi: 10.11779/CJGE201402001

    CHEN Zhenghan. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese) doi: 10.11779/CJGE201402001

    [4] 徐永福, 程岩, 肖杰, 等. 膨胀土滑坡和工程边坡新型防治技术研究[J]. 岩土工程学报, 2022, 44(7): 1281-1294. doi: 10.11779/CJGE202207008

    XU Yongfu, CHENG Yan, XIAO Jie, et al. New prevention and control technology for expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1281-1294. (in Chinese) doi: 10.11779/CJGE202207008

    [5] 叶为民, 孔令伟, 胡瑞林, 等. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报, 2022, 44(7): 1295-1309. doi: 10.11779/CJGE202207009

    YE Weimin, KONG Lingwei, HU Ruilin, et al. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. (in Chinese) doi: 10.11779/CJGE202207009

    [6]

    LU N, CALDERON A R A, WAYLLACE A, et al. Suction stress-based rainfall intensity-duration method for slope instability prediction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2024, 150(8): 04024069. doi: 10.1061/JGGEFK.GTENG-12597

    [7]

    FREDLUND D G, RAHARDJO H, FREDLUND M D. Unsaturated Soil Mechanics in Engineering Practice[M]. New York: Wiley, 2012.

    [8] 徐永福. 膨胀土的水力作用机理及膨胀变形理论[J]. 岩土工程学报, 2020, 42(11): 1979-1987. doi: 10.11779/CJGE202011002

    XU Yongfu. Hydraulic mechanism and swelling deformation theory of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1979-1987. (in Chinese) doi: 10.11779/CJGE202011002

    [9] 陈正汉. 非饱和土与特殊土力学[M]. 北京: 中国建筑工业出版社, 2022.

    CHEN Zhenghan. Mechanics for Unsaturated and Special Soils[M]. Beijing: China Architecture & Building Press, 2022. (in Chinese)

    [10] 孙德安. 非饱和土力学特性及本构模型[J]. 岩土工程学报, 2023, 45(1): 1-23. doi: 10.11779/CJGE20221450

    SUN Dean. Mechanical behaviors and constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 1-23. (in Chinese) doi: 10.11779/CJGE20221450

    [11] 徐永福, 陈永战, 刘松玉, 等. 非饱和膨胀土的三轴试验研究[J]. 岩土工程学报, 1998, 20(3): 14-18. http://cge.nhri.cn/cn/article/id/10119

    XU Yongfu, CHEN Yongzhan, LIU Songyu, et al. Triaxial text on unsaturated expansive Soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 14-18. (in Chinese) http://cge.nhri.cn/cn/article/id/10119

    [12] 孙德安, 孙文静, 孟德林. 膨胀性非饱和土水力和力学性质的弹塑性模拟[J]. 岩土工程学报, 2010, 32(10): 1505-1512. http://cge.nhri.cn/cn/article/id/8363

    SUN Dean, SUN Wenjing, MENG Delin. Elastoplastic modelling of hydraulic and mechanical behaviour of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1505-1512. (in Chinese) http://cge.nhri.cn/cn/article/id/8363

    [13] 张俊然, 孙德安, 姜彤, 等. 宽广吸力范围内弱膨胀土的抗剪强度及其预测[J]. 岩土工程学报, 2016, 38(6): 1064-1070. doi: 10.11779/CJGE201606013

    ZHANG Junran, SUN Dean, JIANG Tong, et al. Shear strength of weakly expansive soils and its prediction in a wide range of suction[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1064-1070. (in Chinese) doi: 10.11779/CJGE201606013

    [14] 牛庚, 孙德安, 陈盼, 等. 南阳重塑非饱和膨胀土的变形和含水率变化特性[J]. 岩土工程学报, 2024, 46(2): 426-435. doi: 10.11779/CJGE20221353

    NIU Geng, SUN Dean, CHEN Pan, et al. Variation characteristics of deformation and water content of remolded unsaturated expansive soils in Nanyang[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 426-435. (in Chinese) doi: 10.11779/CJGE20221353

    [15] 孔令伟, 李雄威, 郭爱国, 等. 脱湿速率影响下的膨胀土工程性状与持水特征初探[J]. 岩土工程学报, 2009, 31(3): 335-340. http://cge.nhri.cn/cn/article/id/13168

    KONG Lingwei, LI Xiongwei, GUO Aiguo, et al. Preliminary study on engineering behaviors and water retention characteristics of expansive soil under influence of drying rate[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 335-340. (in Chinese) http://cge.nhri.cn/cn/article/id/13168

    [16] 邹维列, 张俊峰, 王协群. 脱湿路径下重塑膨胀土的体变修正与土水特征[J]. 岩土工程学报, 2012, 34(12): 2213-2219. http://cge.nhri.cn/cn/article/id/14952

    ZOU Weilie, ZHANG Junfeng, WANG Xiequn. Volume change correction and soil-water characteristics of remodeling expansive soil under dehydration path[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2213-2219. (in Chinese) http://cge.nhri.cn/cn/article/id/14952

    [17] 詹良通, 吴宏伟. 非饱和膨胀土变形和强度特性的三轴试验研究[J]. 岩土工程学报, 2006, 28(2): 196-201. http://cge.nhri.cn/cn/article/id/11952

    ZHAN Liangtong, WU Hongwei. Experimental study on mechanical behavior of recompacted unsaturated expansive clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 196-201. (in Chinese) http://cge.nhri.cn/cn/article/id/11952

    [18] 姚志华, 陈正汉, 朱元青, 等. 膨胀土在湿干循环和三轴浸水过程中细观结构变化的试验研究[J]. 岩土工程学报, 2010, 32(1): 68-76. http://cge.nhri.cn/cn/article/id/11893

    YAO Zhihua, CHEN Zhenghan, ZHU Yuanqing, et al. Meso-structural change of remolded expansive soils during wetting-drying cycles and triaxial soaking tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 68-76. (in Chinese) http://cge.nhri.cn/cn/article/id/11893

    [19] 辛志宇, 谭晓慧, 王雪, 等. 膨胀土增湿过程中吸力-孔隙比-含水率关系[J]. 岩土工程学报, 2015, 37(7): 1195-1203. doi: 10.11779/CJGE201507004

    XIN Zhiyu, TAN Xiaohui, WANG Xue, et al. Relationship among suction, void ratio and water content of expansive soils during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1195-1203. (in Chinese) doi: 10.11779/CJGE201507004

    [20] 缪林昌, 崔颖, 陈可君, 等. 非饱和重塑膨胀土的强度试验研究[J]. 岩土工程学报, 2006, 28(2): 274-276. http://cge.nhri.cn/cn/article/id/11968

    MIAO Linchang, CUI Ying, CHEN Kejun, et al. Tests on strength of unsaturated remolded expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 274-276. (in Chinese) http://cge.nhri.cn/cn/article/id/11968

    [21] 韩华强, 陈生水, 郑澄锋. 非饱和膨胀土强度及变形特性试验研究[J]. 岩土工程学报, 2008, 30(12): 1872-1876. http://cge.nhri.cn/cn/article/id/13078

    HAN Huaqiang, CHEN Shengshui, ZHENG Chengfeng. Experimental study on strength and deformation of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1872-1876. (in Chinese) http://cge.nhri.cn/cn/article/id/13078

    [22] 陈正汉, 苗强强, 郭楠, 等. 关于持水特性曲线研究的几个问题[J]. 岩土工程学报, 2023, 45(4): 671-679. doi: 10.11779/CJGE20220169

    CHEN Zhenghan, MIAO Qiangqiang, GUO Nan, et al. On some problems of researches on soil-water retention curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 671-679. (in Chinese) doi: 10.11779/CJGE20220169

    [23] 钱建固, 林志强. 双孔隙结构重塑非饱和膨胀土的抗剪强度特性[J]. 岩土工程学报, 2023, 45(3): 486-494. doi: 10.11779/CJGE20220112

    QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. (in Chinese) doi: 10.11779/CJGE20220112

    [24]

    ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430. doi: 10.1680/geot.1991.41.2.273

    [25]

    ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1/2): 173-183. http://core.ac.uk/download/pdf/41757243.pdf

    [26]

    D'ONZA F, WHEELER S J, GALLIPOLI D, et al. Benchmarking selection of parameter values for the Barcelona basic model[J]. Engineering Geology, 2015, 196: 99-118. http://core.ac.uk/download/pdf/41826193.pdf

    [27]

    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. http://www.onacademic.com/detail/journal_1000035785054110_b8fd.html

    [28]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated Soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892.

    [29]

    ŠIMŮNEK J, VAN GENUCHTEN M T, ŠEJNA M. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 2016, 15(7): 1-25.

    [30] 孔令伟, 周葆春, 白颢, 等. 荆门非饱和膨胀土的变形与强度特性试验研究[J]. 岩土力学, 2010, 31(10): 3036-3042.

    KONG Lingwei, ZHOU Baochun, BAI Hao, et al. Experimental study of deformation and strength characteristics of Jingmen unsaturated expansive soil[J]. Rock and Soil Mechanics, 2010, 31(10): 3036-3042. (in Chinese)

    [31] 周葆春, 孔令伟. 考虑体积变化的非饱和膨胀土土水特征[J]. 水利学报, 2011, 42(10): 1152-1160.

    ZHOU Baochun, KONG Lingwei. Effect of volume changes on soil-water characteristics of unsaturated expansive soil[J]. Journal of Hydraulic Engineering, 2011, 42(10): 1152-1160. (in Chinese)

    [32] 周葆春, 张彦钧, 汤致松, 等. 荆门压实弱膨胀土孔隙比-含水率-吸力特征的滞回效应[J]. 水利学报, 2013, 44(2): 164-172.

    ZHOU Baochun, ZHANG Yanjun, TANG Zhisong, et al. Hydraulic hysteresis effect on void ratio-water content-suction behavior of Jingmen compacted expansive soil[J]. Journal of Hydraulic Engineering, 2013, 44(2): 164-172. (in Chinese)

    [33] 周葆春, 孔令伟, 梁维云, 等. 压缩过程中非饱和膨胀土体变特征与持水特性的水力耦合效应[J]. 岩土工程学报, 2015, 37(4): 629-640. doi: 10.11779/CJGE201504008

    ZHOU Baochun, KONG Lingwei, LIANG Weiyun, et al. Hydro-mechanical coupling effects on volume change and water retention behaviour of unsaturated expansive soils during compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 629-640. (in Chinese) doi: 10.11779/CJGE201504008

    [34] 马全国, 张彦钧, 汤致松, 等. 压实膨胀土饱和抗剪强度的变动性[J]. 信阳师范学院学报(自然科学版), 2016, 29(4): 629-635.

    MA Quanguo, ZHANG Yanjun, TANG Zhisong, et al. Variation of saturated shear strength of compacted expansive soil[J]. Journal of Xinyang Normal University (Natural Science Edition), 2016, 29(4): 629-635. (in Chinese)

    [35]

    VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392. http://www.onacademic.com/detail/journal_1000035255128310_763d.html

图(10)  /  表(10)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 网络出版日期:  2024-07-23
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回