Experimental study on shear strength of fluid-solidified soil of weathered sandstone based on orthogonal design
-
摘要: 为保护生态环境、降低工程造价,将开挖出的风化砂岩进行破碎后,掺入一定比例的黄土、膨润土、水泥和泵送剂进行固化改良作为流态填筑材料。以兰州某基坑回填工程为依托,通过正交设计,对不同配比的流态固化土进行快速剪切试验,分析抗剪强度的影响因素及其显著性大小,并给出抗剪强度的回归方程。试验表明:对内摩擦角和黏聚力影响最为显著的因素分别是泵送剂和膨润土。各因素对内摩擦角影响大小排序为:泵送剂→水泥→风化砂岩细骨料→黄土→膨润土→风化砂岩粗骨料;对黏聚力影响大小排序为:膨润土→风化砂岩粗骨料→泵送剂→黄土→风化砂岩细骨料→水泥。根据各配比的试验结果,建立预测流态固化土内摩擦角和黏聚力的回归方程。研究结果对评价风化砂岩作为流态填筑材料具有一定的参考价值。Abstract: In order to protect the ecological environment and reduce the project cost, the excavated weathered sandstone is crushed and mixed with a certain proportion of loess, bentonite, cement and pumping agent for solidification and improvement as the fluid-filling materials. Based on the backfill project of a foundation pit in Lanzhou, through orthogonal design, the rapid shear tests on the fluid-solidified soil with different proportions are carried out. The influence factors and significance of shear strength are analyzed, and the regression equation for the shear strength is given. The tests show that the most significant factors affecting the internal friction angle and cohesion are the pumping agent and the bentonite respectively. The order of influence of each factor on the internal friction angle can be arranged as follows: pumping agent→ cement→ fine aggregate of weathered sandstone→ loess→ bentonite→ coarse aggregate of weathered sandstone. The order of influence on the cohesion can be arranged as follows: bentonite→ coarse aggregate of weathered sandstone→ pumping agent→ loess→ fine aggregate of weathered sandstone→ cement. According to the test results of various proportions, the regression equation for predicting the internal friction angle and the cohesion of the fluid-solidified soil is established. The research results have certain reference value for evaluating the weathered sandstone as the fluid-filling materials.
-
Keywords:
- weathered sandstone /
- orthogonal test /
- fluid-solidified soil /
- shear strength /
- regression analysis
-
-
表 1 试验材料基本物理力学性质指标
Table 1 Basic physical and mechanical properties of test materials
土体类型 干密度/(g·cm-3) Gs 孔隙比e0 黏聚力/kPa 内摩擦角/(°) 黄土 1.71 2.17 1.15 47.2 24.9 风化砂岩 1.83 2.60 1.42 23.1 32.35 表 2 水泥的化学成分
Table 2 Chemical compositions of cement
组成 SiO2 Fe2O3 Al2O3 CaO 烧失量 质量含量/% 80.71 3.66 3.26 5.44 5.36 表 3 膨润土的基本性质指标
Table 3 Basic properties of bentonite
材料名称 蒙脱石含量/% 表观黏度 膨胀倍数 密度/(g·cm-3) 硬度 膨润土 98 500 35 2.60 5 表 4 泵送剂性能指标
Table 4 Performance indexes of pumping agent
类型 含固量/% 含气量/% 密度/(g·cm-3) 塌落度增加值/mm 抗压强度比/MPa 缓凝型 36.5 5.0 1.08 80 85 表 5 正交试验因素水平表
Table 5 Factors and levels of orthogonal tests
(%) 水平 因素 A B C D E F 1 80 10 20 2 1 0.2 2 75 15 25 4 3 0.4 3 70 20 30 6 5 0.6 4 65 25 35 8 7 0.8 5 60 30 40 10 10 1.0 表 6 正交试验数据表
Table 6 Data of orthogonal tests
编号 A B C D E F 内摩擦角/(°) 黏聚力/kPa 1 A5 B1 C5 D4 E3 F4 38.36 77.8 2 A3 B4 C5 D2 E4 F1 36.58 29.8 3 A4 B5 C5 D3 E1 F5 34.37 68.4 4 A1 B4 C3 D3 E3 F2 41.31 62.7 5 A2 B3 C5 D1 E2 F2 26.49 9.6 6 A5 B4 C2 D1 E5 F5 28.87 101.4 7 A5 B5 C1 D5 E4 F2 43.27 87.3 8 A5 B3 C3 D2 E1 F3 38.28 74.6 9 A2 B5 C3 D4 E5 F1 37.32 69.9 10 A3 B5 C4 D1 E3 F3 52.62 25.3 11 A1 B2 C5 D5 E5 F3 44.91 109.8 12 A1 B3 C4 D4 E4 F5 42.86 78.2 13 A1 B1 C1 D1 E1 F1 15.23 31.9 14 A2 B4 C4 D5 E1 F4 41.06 79.1 15 A5 B2 C4 D3 E2 F1 28.46 46.6 16 A4 B3 C2 D5 E3 F1 39.85 32.1 17 A2 B2 C1 D2 E3 F5 31.67 25.3 18 A3 B2 C2 D4 E1 F2 40.43 31.2 19 A2 B1 C2 D3 E4 F3 43.76 49.4 20 A1 B5 C2 D2 E2 F4 37.44 88.3 21 A3 B1 C3 D5 E2 F5 32.92 86.8 22 A4 B4 C1 D4 E2 F3 44.88 30.1 23 A3 B3 C1 D3 E5 F4 31.23 41.8 24 A4 B2 C3 D1 E4 F4 46.03 31.2 25 A4 B1 C4 D2 E5 F2 36.25 45.1 表 7 内摩擦角极差分析结果
Table 7 Results of range analysis of internal friction angle
K1值 因素 A B C D E F K1 181.750 166.520 166.280 169.240 169.370 157.440 K2 180.300 191.500 190.350 180.220 170.190 187.750 K3 193.780 178.710 195.860 179.130 203.810 224.450 K4 201.380 192.700 201.250 203.850 212.500 194.120 K5 177.240 205.020 180.710 202.010 178.580 170.690 ¯K1 36.350 33.304 33.256 33.848 33.874 31.488 ¯K2 36.060 38.300 38.070 36.044 34.038 37.550 ¯K3 38.756 35.742 39.172 35.826 40.762 44.890 ¯K4 40.276 38.540 40.250 40.770 42.500 38.824 ¯K5 35.448 41.004 36.142 40.402 35.716 34.138 R 24.140 38.500 34.970 34.610 43.130 67.010 表 8 黏聚力极差分析结果
Table 8 Results of range analysis of cohesion
K1值 因素 A B C D E F K1 370.90 291.00 216.40 199.40 285.20 210.30 K2 233.30 244.10 302.40 263.10 261.40 235.90 K3 214.90 236.30 325.20 268.90 223.20 289.20 K4 206.90 303.10 274.30 287.20 275.90 318.20 K5 387.70 339.20 295.40 395.10 268.00 325.80 ¯K1 74.18 58.20 43.28 39.88 57.04 42.06 ¯K2 46.66 48.82 60.48 52.62 52.28 47.18 ¯K3 42.98 47.26 65.04 53.78 44.64 57.84 ¯K4 41.38 60.62 29.86 57.44 55.18 63.64 ¯K5 77.54 67.84 54.86 79.02 73.60 65.16 R 180.80 102.90 108.80 195.70 62.00 115.50 -
[1] 赵明华, 邓觐宇, 曹文贵. 红砂岩崩解特性及其路堤填筑技术研究[J]. 中国公路学报, 2003, 16(3): 1–5. doi: 10.3321/j.issn:1001-7372.2003.03.001 ZHAO Ming-hua, DENG Jin-yu, CAO Wen-gui. Study of the disintegration character of red sandstone and the construction techniques of red sandstone embankment[J]. China Journal of Highway and Transport, 2003, 16(3): 1–5. (in Chinese) doi: 10.3321/j.issn:1001-7372.2003.03.001
[2] 朱彦鹏, 马滔, 杨校辉, 等. 基于正交设计的红砂岩改良土抗剪强度试验和回归分析[J]. 岩土工程学报, 2018, 40(增刊1): 87–92. doi: 10.11779/CJGE2018S1014 ZHU Yan-peng, MA Tao, YANG Xiao-hui, et al. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87–92. (in Chinese) doi: 10.11779/CJGE2018S1014
[3] 赵明华, 刘晓明, 苏永华. 含崩解软岩红层材料路用工程特性试验研究[J]. 岩土工程学报, 2005, 27(6): 667–671. doi: 10.3321/j.issn:1000-4548.2005.06.012 ZHAO Ming-hua, LIU Xiao-ming, SU Yong-hua. Experimental studies on engineering properties of red bed material containing slaking rock[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 667–671. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.012
[4] 张渭军, 王永胜, 马滔. 基于正交设计的红层软岩改良土压缩模量试验研究[J]. 地震工程学报, 2022, 44(2): 264–269. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202202003.htm ZHANG Wei-jun, WANG Yong-sheng, MA Tao. Experimental study on the compression modulus of red-bed soft rock improved soil based on orthogonal design[J]. China Earthquake Engineering Journal, 2022, 44(2): 264–269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202202003.htm
[5] 钟秀梅, 王谦, 刘钊钊, 等. 干湿循环作用下粉煤灰改良黄土路基的动强度试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 95–99. doi: 10.11779/CJGE2020S1019 ZHONG Xiu-mei, WANG Qian, LIU Zhao-zhao, et al. Dynamic strength of fly ash–modified loess subgrade under influences of drying-wetting cycle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 95–99. (in Chinese) doi: 10.11779/CJGE2020S1019
[6] 黄瑞, 张孝斌, 朱彦鹏, 等. 红砂岩浮力折减系数研究[J]. 水利与建筑工程学报, 2022, 20(2): 15–21, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202202001.htm HUANG Rui, ZHANG Xiao-bin, ZHU Yan-peng, et al. Experimental research on red sandstone buoyancy reduction coefficient[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(2): 15–21, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202202001.htm
[7] 王浩宇, 许金余, 王鹏, 等. 水–动力耦合作用下红砂岩力学性质及能量机制研究[J]. 岩土力学, 2016, 37(10): 2861–2868, 2876. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610017.htm WANG Hao-yu, XU Jin-yu, WANG Peng, et al. Mechanical properties and energy mechanism of red sandstone under hydro-dynamic coupling effect[J]. Rock and Soil Mechanics, 2016, 37(10): 2861–2868, 2876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610017.htm
[8] 王章琼, 高云, 沈雷, 等. 石灰改性红砂岩残积土工程性质试验研究[J]. 工程地质学报, 2018, 26(2): 416–421. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802017.htm WANG Zhang-qiong, GAO Yun, SHEN Lei, et al. Engineering properties of lime-modifiedred sandstone residual soil[J]. Journal of Engineering Geology, 2018, 26(2): 416–421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802017.htm
[9] 甘文宁, 朱大勇, 吴迎雷, 等. 红砂岩细粒土抗剪强度的试验研究[J]. 四川大学学报(工程科学版), 2014, 46(增刊2): 70–75. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2014S2013.htm GAN Wen-ning, ZHU Da-yong, WU Ying-lei, et al. Experimental study on shear strength of red sandstone fine-grained soils[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(S2): 70–75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2014S2013.htm
[10] 张岩, 耿济世, 毛磊, 等. 珠江三角洲海相沉积软土压缩和剪切变形特性试验研究[J]. 地震工程学报, 2018, 40(4): 745–751. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201804018.htm ZHANG Yan, GENG Ji-shi, MAO Lei, et al. Compression and shear deformation properties of marine soft soil deposits in the Pearl River Delta[J]. China Earthquake Engineering Journal, 2018, 40(4): 745–751. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201804018.htm
[11] 喻泽红, 魏红卫, 邹银生. 加筋红砂岩风化土强度和变形特性[J]. 岩石力学与工程学报, 2005, 24(15): 2770–2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515031.htm YU Ze-hong, WEI Hong-wei, ZOU Yin-sheng. Characteristics of shear strength and deformation of reinforced red sand silty clay with geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2770–2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515031.htm
[12] 李国维, 王佳奕, 陈伟, 等. 干湿循环对不同粒径组崩解性砂岩改良膨胀土的影响[J]. 岩土工程学报, 2022, 44(4): 643–651. doi: 10.11779/CJGE202204006 LI Guo-wei, WANG Jia-yi, CHEN Wei, et al. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643–651. (in Chinese) doi: 10.11779/CJGE202204006
[13] 祝艳波, 余宏明, 杨艳霞, 等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 425–432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302025.htm ZHU Yan-bo, YU Hong-ming, YANG Yan-xia, et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425–432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302025.htm
[14] 朱彦鹏, 杨校辉, 周勇, 等. 基于含水量和干密度影响的压实土抗剪强度试验[J]. 兰州理工大学学报, 2016, 42(6): 114–120. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201606022.htm ZHU Yan-peng, YANG Xiao-hui, ZHOU Yong, et al. Experiment of shear strength of compacted soil when effect of its moisture capacity and dry density being taken into account[J]. Journal of Lanzhou University of Technology, 2016, 42(6): 114–120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201606022.htm
[15] 张豫川, 姚永国, 周泓. 长龄期改良黄土抗剪强度与渗透性试验研究[J]. 岩土力学, 2017, 38(增刊2): 170–176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2025.htm ZHANG Yu-chuan, YAO Yong-guo, ZHOU Hong. Experimental study of shear strength and permeability of improved loess with long age[J]. Rock and Soil Mechanics, 2017, 38(S2): 170–176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2025.htm
[16] 陈国庆, 简大华, 陈宇航, 等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报, 2021, 43(4): 661–669. doi: 10.11779/CJGE202104008 CHEN Guo-qin, JIAN Da-hua, CHEN Yu-hang, et al. Shear creep characteristics of red sandstone after freeze-thaw with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 661–669. (in Chinese) doi: 10.11779/CJGE202104008
[17] 中华人民共和国. 住房和城乡建设部. 土工试验方法标准: GB/T 50123— 2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
-
期刊类型引用(4)
1. 王艳,薛逸翔,朱鹏. 电动联合渗透反应屏障修复污染土壤的研究进展. 安全与环境学报. 2024(01): 330-344 . 百度学术
2. 周细霞,刘朝淑,孙荣国. Fe(II)改性蒙脱石对土壤汞的吸附固定机理探究. 贵州师范大学学报(自然科学版). 2024(04): 63-74 . 百度学术
3. 王艳,张李奕岚,朱鹏,王恒宇. 电动法去除污染土中重金属铬的试验研究. 安全与环境学报. 2024(08): 3251-3259 . 百度学术
4. 李宗春,郭苗章,谌伟艳. 某废弃矿山重金属污染土壤治理约束优化研究. 环境科学与管理. 2023(05): 71-75 . 百度学术
其他类型引用(3)