• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Yan-peng, WANG Hao, LIU Dong-rui, LÜ Yu-bao, ZHANG Zhi-qi. Experimental study on shear strength of fluid-solidified soil of weathered sandstone based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 46-51. DOI: 10.11779/CJGE2022S1009
Citation: ZHU Yan-peng, WANG Hao, LIU Dong-rui, LÜ Yu-bao, ZHANG Zhi-qi. Experimental study on shear strength of fluid-solidified soil of weathered sandstone based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 46-51. DOI: 10.11779/CJGE2022S1009

Experimental study on shear strength of fluid-solidified soil of weathered sandstone based on orthogonal design

More Information
  • Received Date: September 22, 2022
  • Available Online: February 06, 2023
  • In order to protect the ecological environment and reduce the project cost, the excavated weathered sandstone is crushed and mixed with a certain proportion of loess, bentonite, cement and pumping agent for solidification and improvement as the fluid-filling materials. Based on the backfill project of a foundation pit in Lanzhou, through orthogonal design, the rapid shear tests on the fluid-solidified soil with different proportions are carried out. The influence factors and significance of shear strength are analyzed, and the regression equation for the shear strength is given. The tests show that the most significant factors affecting the internal friction angle and cohesion are the pumping agent and the bentonite respectively. The order of influence of each factor on the internal friction angle can be arranged as follows: pumping agent→ cement→ fine aggregate of weathered sandstone→ loess→ bentonite→ coarse aggregate of weathered sandstone. The order of influence on the cohesion can be arranged as follows: bentonite→ coarse aggregate of weathered sandstone→ pumping agent→ loess→ fine aggregate of weathered sandstone→ cement. According to the test results of various proportions, the regression equation for predicting the internal friction angle and the cohesion of the fluid-solidified soil is established. The research results have certain reference value for evaluating the weathered sandstone as the fluid-filling materials.
  • [1]
    赵明华, 邓觐宇, 曹文贵. 红砂岩崩解特性及其路堤填筑技术研究[J]. 中国公路学报, 2003, 16(3): 1–5. doi: 10.3321/j.issn:1001-7372.2003.03.001

    ZHAO Ming-hua, DENG Jin-yu, CAO Wen-gui. Study of the disintegration character of red sandstone and the construction techniques of red sandstone embankment[J]. China Journal of Highway and Transport, 2003, 16(3): 1–5. (in Chinese) doi: 10.3321/j.issn:1001-7372.2003.03.001
    [2]
    朱彦鹏, 马滔, 杨校辉, 等. 基于正交设计的红砂岩改良土抗剪强度试验和回归分析[J]. 岩土工程学报, 2018, 40(增刊1): 87–92. doi: 10.11779/CJGE2018S1014

    ZHU Yan-peng, MA Tao, YANG Xiao-hui, et al. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87–92. (in Chinese) doi: 10.11779/CJGE2018S1014
    [3]
    赵明华, 刘晓明, 苏永华. 含崩解软岩红层材料路用工程特性试验研究[J]. 岩土工程学报, 2005, 27(6): 667–671. doi: 10.3321/j.issn:1000-4548.2005.06.012

    ZHAO Ming-hua, LIU Xiao-ming, SU Yong-hua. Experimental studies on engineering properties of red bed material containing slaking rock[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 667–671. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.012
    [4]
    张渭军, 王永胜, 马滔. 基于正交设计的红层软岩改良土压缩模量试验研究[J]. 地震工程学报, 2022, 44(2): 264–269. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202202003.htm

    ZHANG Wei-jun, WANG Yong-sheng, MA Tao. Experimental study on the compression modulus of red-bed soft rock improved soil based on orthogonal design[J]. China Earthquake Engineering Journal, 2022, 44(2): 264–269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202202003.htm
    [5]
    钟秀梅, 王谦, 刘钊钊, 等. 干湿循环作用下粉煤灰改良黄土路基的动强度试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 95–99. doi: 10.11779/CJGE2020S1019

    ZHONG Xiu-mei, WANG Qian, LIU Zhao-zhao, et al. Dynamic strength of fly ash–modified loess subgrade under influences of drying-wetting cycle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 95–99. (in Chinese) doi: 10.11779/CJGE2020S1019
    [6]
    黄瑞, 张孝斌, 朱彦鹏, 等. 红砂岩浮力折减系数研究[J]. 水利与建筑工程学报, 2022, 20(2): 15–21, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202202001.htm

    HUANG Rui, ZHANG Xiao-bin, ZHU Yan-peng, et al. Experimental research on red sandstone buoyancy reduction coefficient[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(2): 15–21, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202202001.htm
    [7]
    王浩宇, 许金余, 王鹏, 等. 水–动力耦合作用下红砂岩力学性质及能量机制研究[J]. 岩土力学, 2016, 37(10): 2861–2868, 2876. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610017.htm

    WANG Hao-yu, XU Jin-yu, WANG Peng, et al. Mechanical properties and energy mechanism of red sandstone under hydro-dynamic coupling effect[J]. Rock and Soil Mechanics, 2016, 37(10): 2861–2868, 2876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610017.htm
    [8]
    王章琼, 高云, 沈雷, 等. 石灰改性红砂岩残积土工程性质试验研究[J]. 工程地质学报, 2018, 26(2): 416–421. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802017.htm

    WANG Zhang-qiong, GAO Yun, SHEN Lei, et al. Engineering properties of lime-modifiedred sandstone residual soil[J]. Journal of Engineering Geology, 2018, 26(2): 416–421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802017.htm
    [9]
    甘文宁, 朱大勇, 吴迎雷, 等. 红砂岩细粒土抗剪强度的试验研究[J]. 四川大学学报(工程科学版), 2014, 46(增刊2): 70–75. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2014S2013.htm

    GAN Wen-ning, ZHU Da-yong, WU Ying-lei, et al. Experimental study on shear strength of red sandstone fine-grained soils[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(S2): 70–75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2014S2013.htm
    [10]
    张岩, 耿济世, 毛磊, 等. 珠江三角洲海相沉积软土压缩和剪切变形特性试验研究[J]. 地震工程学报, 2018, 40(4): 745–751. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201804018.htm

    ZHANG Yan, GENG Ji-shi, MAO Lei, et al. Compression and shear deformation properties of marine soft soil deposits in the Pearl River Delta[J]. China Earthquake Engineering Journal, 2018, 40(4): 745–751. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201804018.htm
    [11]
    喻泽红, 魏红卫, 邹银生. 加筋红砂岩风化土强度和变形特性[J]. 岩石力学与工程学报, 2005, 24(15): 2770–2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515031.htm

    YU Ze-hong, WEI Hong-wei, ZOU Yin-sheng. Characteristics of shear strength and deformation of reinforced red sand silty clay with geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2770–2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515031.htm
    [12]
    李国维, 王佳奕, 陈伟, 等. 干湿循环对不同粒径组崩解性砂岩改良膨胀土的影响[J]. 岩土工程学报, 2022, 44(4): 643–651. doi: 10.11779/CJGE202204006

    LI Guo-wei, WANG Jia-yi, CHEN Wei, et al. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643–651. (in Chinese) doi: 10.11779/CJGE202204006
    [13]
    祝艳波, 余宏明, 杨艳霞, 等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 425–432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302025.htm

    ZHU Yan-bo, YU Hong-ming, YANG Yan-xia, et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425–432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302025.htm
    [14]
    朱彦鹏, 杨校辉, 周勇, 等. 基于含水量和干密度影响的压实土抗剪强度试验[J]. 兰州理工大学学报, 2016, 42(6): 114–120. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201606022.htm

    ZHU Yan-peng, YANG Xiao-hui, ZHOU Yong, et al. Experiment of shear strength of compacted soil when effect of its moisture capacity and dry density being taken into account[J]. Journal of Lanzhou University of Technology, 2016, 42(6): 114–120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201606022.htm
    [15]
    张豫川, 姚永国, 周泓. 长龄期改良黄土抗剪强度与渗透性试验研究[J]. 岩土力学, 2017, 38(增刊2): 170–176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2025.htm

    ZHANG Yu-chuan, YAO Yong-guo, ZHOU Hong. Experimental study of shear strength and permeability of improved loess with long age[J]. Rock and Soil Mechanics, 2017, 38(S2): 170–176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2025.htm
    [16]
    陈国庆, 简大华, 陈宇航, 等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报, 2021, 43(4): 661–669. doi: 10.11779/CJGE202104008

    CHEN Guo-qin, JIAN Da-hua, CHEN Yu-hang, et al. Shear creep characteristics of red sandstone after freeze-thaw with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 661–669. (in Chinese) doi: 10.11779/CJGE202104008
    [17]
    中华人民共和国. 住房和城乡建设部. 土工试验方法标准: GB/T 50123— 2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
  • Related Articles

    [1]ZHANG Zihong, YAN Guanyu, XU Chengshun, DU Hegang. Seismic responses of underground structures based on centrifuge shaking table test in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 324-336. DOI: 10.11779/CJGE20231101
    [2]AN Yijing, HAN Pengju, QIN Jiandong, BAI Xiangling, HE Bin, WANG Xiaoyuan. Seismic response analysis of leaning Wenfeng Pagoda considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 201-207. DOI: 10.11779/CJGE2023S20028
    [3]YU Hai-tao, CHEN Gong. Analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1331-1337. DOI: 10.11779/CJGE202107019
    [4]ZHU Sai-nan, LI Wei-hua, Lee Vincent W, ZHAO Cheng-gang. Seismic response of undersea lining tunnels under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1418-1427. DOI: 10.11779/CJGE202008006
    [5]WANG Guo-bo, BA Feng, SUN Fu-xue, YUAN Ming-zhi, HAO Peng-fei. Seismic response analysis of long shield tunnels under non-uniform excitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1228-1237. DOI: 10.11779/CJGE202007006
    [6]MU Jia-hao, WANG Guo-bo. Seismic response of small-radius planar curved tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 197-200. DOI: 10.11779/CJGE2019S2050
    [7]WANG Guo-bo, YU Miao-kun, YUAN Ming-zhi, LI Kai-da. Seismic response analysis of cross metro transfer station structure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1227-1234. DOI: 10.11779/CJGE201907006
    [8]LIU Zhong-xian, WANG Dong. Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013
    [9]QU Hong-lüe, ZHANG Jian-jing, WANG Fu-jiang. Seismic response of prestressed anchor sheet pile wall from shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 313-320.
    [10]DU Jianguo, LIN Gao. Effect of foundation stiffness and anisotropy on the seismic response of concrete dams[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 819-823.

Catalog

    Article views (201) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return