• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水动力-应力-化学溶蚀耦合作用下劣化灰岩能量演化规律与损伤本构模型

杨忠平, 侯善萌, 张益铭, 高宇豪, 刘新荣

杨忠平, 侯善萌, 张益铭, 高宇豪, 刘新荣. 水动力-应力-化学溶蚀耦合作用下劣化灰岩能量演化规律与损伤本构模型[J]. 岩土工程学报, 2025, 47(4): 759-768. DOI: 10.11779/CJGE20231109
引用本文: 杨忠平, 侯善萌, 张益铭, 高宇豪, 刘新荣. 水动力-应力-化学溶蚀耦合作用下劣化灰岩能量演化规律与损伤本构模型[J]. 岩土工程学报, 2025, 47(4): 759-768. DOI: 10.11779/CJGE20231109
YANG Zhongping, HOU Shanmeng, ZHANG Yiming, GAO Yuhao, LIU Xinrong. Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 759-768. DOI: 10.11779/CJGE20231109
Citation: YANG Zhongping, HOU Shanmeng, ZHANG Yiming, GAO Yuhao, LIU Xinrong. Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 759-768. DOI: 10.11779/CJGE20231109

水动力-应力-化学溶蚀耦合作用下劣化灰岩能量演化规律与损伤本构模型  English Version

基金项目: 

国家自然科学基金项目 42177125

国家自然科学基金项目 41972266

国家重点研发计划课题 2021YFB3901402

国家重点研发计划课题 2018YFC1504802

详细信息
    作者简介:

    杨忠平(1981—),男,博士,教授,主要从事岩土工程、环境岩土等方面的教学与研究工作。E-mail:yang-zhp@163.com

  • 中图分类号: TU43

Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion

  • 摘要: 库水位常年周期性波动,导致消落带基岩处于水动力冲蚀的干湿循环状态,加之覆岩的自重作用,促使基岩强度的劣化。为研究水动力-应力-化学溶蚀耦合条件下岩体劣化规律,在现场调查基础上,开展了该耦合条件下灰岩试样劣化试验,阐明了此条件下灰岩能量演化规律并提出了损伤本构模型。结果表明:根据能率-位移曲线,将岩石破坏过程划分为易损区压密、微裂隙闭合、弹性变形、微裂隙扩展及峰后破坏5个阶段;随着劣化应力的增加,部分耗散能提前释放,耗散能与弹性能相等时的应变逐渐减小;随着干湿循环次数的增加,其破坏时总能量对应力的敏感性增强;揭示了水动力-应力-化学溶蚀耦合机理;提出了水动力-应力-化学溶蚀耦合作用下考虑压密阶段劣化灰岩的损伤本构模型,预测精度较高,可为库区灾害预测防治提供一定的理论指导。
    Abstract: The reservoir water level undergoes annual cyclical fluctuations, which leads to the state of hydrodynamic erosion of wetting-drying cycles of the bedrock in the hydro-fluctuation belt. In addition, the self-weight of the overlying rock mass also reduces the strength of the bedrock. To study the deterioration law of the rock mass under the coupling of hydrodynamic- stress-chemical corrosion, the degradation tests are conducted on limestone samples based on the field investigations. The law of energy evolution of limestone under the coupling of hydrodynamic-stress-chemical corrosion is elucidated, and the constitutive model for damage is proposed. The results show that according to the energy rate-strain curve, the rock failure process can be divided into five stages: compaction of vulnerable zone, microfracture closure, elastic deformation, microfracture extension, and post-peak failure. With the increase of the degradation stress, part of the dissipative energy is released in advance, and the strain at which the dissipated energy equals the elastic energy gradually decreases. The sensitivity of the total energy to the degradation stress increases with the increase of the wetting-drying cycles. The coupling mechanism of hydrodynamic-stress-chemical corrosion is revealed. The constitutive model for damage considering the deterioration of limestone at the compaction stage under the coupling of hydrodynamic-stress-chemical corrosion is proposed, which has higher prediction accuracy and can provide some theoretical guidance for disaster prediction and prevention in reservoir areas.
  • 图  1   水动力-应力耦合山体模型概化图

    Figure  1.   Generalization diagram of model for mountain under hydrodynamic-stress coupling

    图  2   水动力-应力耦合试验装置

    Figure  2.   Test devices for hydrodynamic-stress coupling

    图  3   pH=2,3,4情况下岩样劣化结果

    Figure  3.   Degradation results of samples at pH=2, 3, 4

    图  4   图像处理流程

    Figure  4.   Image processing process

    图  5   HSCC耦合试验流程图

    Figure  5.   Flow chart of HSCC tests

    图  6   单轴压缩试验下岩样能量转换示意图

    Figure  6.   Schematic diagram of energy conversion of rock samples under uniaxial compression test

    图  7   5次循环作用下能率-应变曲线

    Figure  7.   Energy rate-strain curves under 5 cycles

    图  8   10次循环各劣化应力下应力-应变及能量-应变曲线

    Figure  8.   Stress-strain and energy strain curves under different axial forces for 10 cycles

    图  9   5次及20次循环作用下能量图

    Figure  9.   Energy diagram under 5 cycles and 20 cycles

    图  10   HSCC耦合机理示意图

    Figure  10.   Mechanism diagram of coupling effects of HSCC

    图  11   10次循环下CT扫描结果

    Figure  11.   CT scanning results under 10 cycles

    图  12   试验曲线与理论曲线对比

    Figure  12.   Comparison between test and theoretical results

    表  1   HSCC试验方案

    Table  1   Test schemes of HSCC

    序号 研究内容 加载
    方式
    HSCC试验
    定量 变量
    各循环下
    灰岩劣化
    单轴
    压缩
    应力
    (0,1,2 MPa)
    n=5,10,15,20
    各应力下
    灰岩劣化
    单轴
    压缩
    循环次数
    (5,10,15,20)
    p=0,1,2 MPa
    下载: 导出CSV

    表  2   模型参数

    Table  2   Model parameters

    循环次数n 轴向应力/MPa 峰值
    强度/MPa
    F0/
    MPa
    m 弹性模量拟合值/MPa
    5 0 86.26 88.09 37.79 8525
    1 86.07 82.33 36.35 7920
    2 81.74 77.87 33.61 7836
    10 0 80.45 77.49 27.11 8043
    1 76.98 78.05 26.70 7150
    2 68.96 68.13 24.29 7034
    15 0 74.90 78.65 25.94 6768
    1 65.57 67.70 25.73 6596
    2 58.80 48.37 11.04 6895
    20 0 49.41 50.96 22.15 6223
    1 42.87 45.58 22.11 5607
    2 39.12 52.41 10.50 5256
    下载: 导出CSV
  • [1] 闫国强, 殷跃平, 黄波林, 等. 三峡库区顺层灰岩岸坡劣化-溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.

    YAN Guoqiang, YIN Yueping, HUANG Bolin, et al. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2022, 43(9): 2568-2580. (in Chinese)

    [2] 贺凯, 高杨, 殷跃平, 等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质, 2020, 47(4): 82-89.

    HE Kai, GAO Yang, YIN Yueping, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 82-89. (in Chinese)

    [3] 李会中, 王团乐, 孙立华, 等. 三峡库区千将坪滑坡地质特征与成因机制分析[J]. 岩土力学, 2006, 27(增刊2): 1239-1244.

    LI Huizhong, WANG Tuanle, SUN Lihua, et al. Characteristics and mechanism of Qianjiangping Landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2006, 27(S2): 1239-1244. (in Chinese)

    [4]

    HUANG B L, YIN Y P, LIU G N, et al. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, Three Gorges Reservoir, on November 23, 2008[J]. Landslides, 2012, 9(3): 395-405.

    [5] 刘新荣, 景瑞, 缪露莉, 等. 巫山段消落带岸坡库岸再造模式及典型案例分析[J]. 岩石力学与工程学报, 2020, 39(7): 1321-1332.

    LIU Xinrong, JING Rui, MIAO Luli, et al. Reconstruction models and typical case analysis of the fluctuation belt of reservoir bank slopes in Wushan[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1321-1332. (in Chinese)

    [6] 黄波林, 董星辰, 殷跃平, 等. 典型滑坡涌浪降能减浪试验研究[J]. 岩石力学与工程学报, 2024, 43(6): 1397-1405.

    HUANG Bolin, DONG Xingchen, YIN Yueping, et al. Experimental study on energy reduction and wave descent of typical landslide-induced impulse waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1397-1405. (in Chinese)

    [7] 黄达, 匡希彬, 罗世林. 三峡库区藕塘滑坡变形特点及复活机制研究[J]. 水文地质工程地质, 2019, 46(5): 127-135.

    HUANG Da, KUANG Xibin, LUO Shilin. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 127-135. (in Chinese)

    [8] 邓华锋, 齐豫, 李建林, 等. 水–岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报, 2021, 43(4): 634-643. doi: 10.11779/CJGE202104005

    DENG Huafeng, QI Yu, LI Jianlin, et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 634-643. (in Chinese) doi: 10.11779/CJGE202104005

    [9] 朱建波, 付乙梓, 李瑞, 等. 干湿循环与动态压缩耦合作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2023, 42(增刊1): 3558-3566.

    (ZHU Jianbo, FU Yizi, LI Rui, et al. Experimental study on mechanical characteristics of sandstone under drying-wetting cycles and dynamic compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1): 3558-3566.

    [10] 周昌台, 谢和平, 朱建波. 基于能量理论的岩石动态破坏准则[J]. 岩石力学与工程学报, 2023, 42(8): 1890-1898.

    ZHOU Changtai, XIE Heping, ZHU Jianbo. A dynamic strength criterion of rock materials based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(8): 1890-1898. (in Chinese)

    [11]

    BRUNING T, KARAKUS M, NGUYEN G D, et al. Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control[J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3321-3341.

    [12] 赵志红, 金浩增, 郭建春, 等. 水化作用下深层页岩软化本构模型研究[J]. 岩石力学与工程学报, 2022, 41(增刊2): 3189-3197.

    ZHAO Zhihong, JIN Haozeng, GUO Jianchun, et al. Study on softening constitutive model of deep shale under hydration[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3189-3197. (in Chinese)

    [13] 张超, 俞缙, 白允, 等. 基于强度理论的岩石脆延转化统计损伤本构模型[J]. 岩石力学与工程学报, 2023, 42(2): 307-316.

    ZHANG Chao, YU Jin, BAI Yun, et al. Statistical damage constitutive model of rock brittle-ductile transition based on strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 307-316. (in Chinese)

    [14]

    GARCIA-RIOS M, LUQUOT L, SOLER J M, et al. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414: 95-108.

    [15]

    PARK H S, HWANG D, SEO J K. Metal artifact reduction for polychromatic X-ray CT based on a beam-hardening corrector[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 480-487.

    [16]

    ENGEL K J, SPIES L, VOGTMEIER G, et al. Impact of CT detector pixel-to-pixel crosstalk on image quality[C]// Medical Imaging 2006: Physics of Medical Imaging. San Diego, 2006.

    [17] 黄达, 谭清, 黄润秋. 高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究[J]. 岩石力学与工程学报, 2012, 31(12): 2483-2493.

    HUANG Da, TAN Qing, HUANG Runqiu. Mechanism of strain energy conversion process for marble damage and fracture under high stress and rapid unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2483-2493. (in Chinese)

    [18] 党志, 侯瑛. 玄武岩-水相互作用的溶解机理研究[J]. 岩石学报, 1995, 11(1): 9-15.

    DANG Zhi, HOU Ying. Experimental study on the dissolution kinetics of basalt-water interaction[J]. Acta Petrologica Sinica, 1995, 11(1): 9-15. (in Chinese)

    [19]

    LEMAITRE J. A course on Damage Mechanics[M]. Berlin: Springer, 1996.

    [20] 傅晏. 干湿循环水岩相互作用下岩石劣化机理研究[D]. 重庆: 重庆大学, 2010.

    FU Yan. Study on the Mechanism of Rock Deterioration under the Interaction of Dry-Wet Circulating Water and Rock[D]. Chongqing: Chongqing University, 2010. (in Chinese)

    [21]

    WANG Z L, LI Y C, WANG J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences, 2007, 33(1): 1-9.

图(12)  /  表(2)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  34
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-15
  • 网络出版日期:  2024-11-13
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回