• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
YANG Zhongping, HOU Shanmeng, ZHANG Yiming, GAO Yuhao, LIU Xinrong. Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 759-768. DOI: 10.11779/CJGE20231109
Citation: YANG Zhongping, HOU Shanmeng, ZHANG Yiming, GAO Yuhao, LIU Xinrong. Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 759-768. DOI: 10.11779/CJGE20231109

Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion

More Information
  • Received Date: November 15, 2023
  • Available Online: November 13, 2024
  • The reservoir water level undergoes annual cyclical fluctuations, which leads to the state of hydrodynamic erosion of wetting-drying cycles of the bedrock in the hydro-fluctuation belt. In addition, the self-weight of the overlying rock mass also reduces the strength of the bedrock. To study the deterioration law of the rock mass under the coupling of hydrodynamic- stress-chemical corrosion, the degradation tests are conducted on limestone samples based on the field investigations. The law of energy evolution of limestone under the coupling of hydrodynamic-stress-chemical corrosion is elucidated, and the constitutive model for damage is proposed. The results show that according to the energy rate-strain curve, the rock failure process can be divided into five stages: compaction of vulnerable zone, microfracture closure, elastic deformation, microfracture extension, and post-peak failure. With the increase of the degradation stress, part of the dissipative energy is released in advance, and the strain at which the dissipated energy equals the elastic energy gradually decreases. The sensitivity of the total energy to the degradation stress increases with the increase of the wetting-drying cycles. The coupling mechanism of hydrodynamic-stress-chemical corrosion is revealed. The constitutive model for damage considering the deterioration of limestone at the compaction stage under the coupling of hydrodynamic-stress-chemical corrosion is proposed, which has higher prediction accuracy and can provide some theoretical guidance for disaster prediction and prevention in reservoir areas.
  • [1]
    闫国强, 殷跃平, 黄波林, 等. 三峡库区顺层灰岩岸坡劣化-溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.

    YAN Guoqiang, YIN Yueping, HUANG Bolin, et al. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2022, 43(9): 2568-2580. (in Chinese)
    [2]
    贺凯, 高杨, 殷跃平, 等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质, 2020, 47(4): 82-89.

    HE Kai, GAO Yang, YIN Yueping, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 82-89. (in Chinese)
    [3]
    李会中, 王团乐, 孙立华, 等. 三峡库区千将坪滑坡地质特征与成因机制分析[J]. 岩土力学, 2006, 27(增刊2): 1239-1244.

    LI Huizhong, WANG Tuanle, SUN Lihua, et al. Characteristics and mechanism of Qianjiangping Landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2006, 27(S2): 1239-1244. (in Chinese)
    [4]
    HUANG B L, YIN Y P, LIU G N, et al. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, Three Gorges Reservoir, on November 23, 2008[J]. Landslides, 2012, 9(3): 395-405.
    [5]
    刘新荣, 景瑞, 缪露莉, 等. 巫山段消落带岸坡库岸再造模式及典型案例分析[J]. 岩石力学与工程学报, 2020, 39(7): 1321-1332.

    LIU Xinrong, JING Rui, MIAO Luli, et al. Reconstruction models and typical case analysis of the fluctuation belt of reservoir bank slopes in Wushan[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1321-1332. (in Chinese)
    [6]
    黄波林, 董星辰, 殷跃平, 等. 典型滑坡涌浪降能减浪试验研究[J]. 岩石力学与工程学报, 2024, 43(6): 1397-1405.

    HUANG Bolin, DONG Xingchen, YIN Yueping, et al. Experimental study on energy reduction and wave descent of typical landslide-induced impulse waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1397-1405. (in Chinese)
    [7]
    黄达, 匡希彬, 罗世林. 三峡库区藕塘滑坡变形特点及复活机制研究[J]. 水文地质工程地质, 2019, 46(5): 127-135.

    HUANG Da, KUANG Xibin, LUO Shilin. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 127-135. (in Chinese)
    [8]
    邓华锋, 齐豫, 李建林, 等. 水–岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报, 2021, 43(4): 634-643. doi: 10.11779/CJGE202104005

    DENG Huafeng, QI Yu, LI Jianlin, et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 634-643. (in Chinese) doi: 10.11779/CJGE202104005
    [9]
    朱建波, 付乙梓, 李瑞, 等. 干湿循环与动态压缩耦合作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2023, 42(增刊1): 3558-3566.

    (ZHU Jianbo, FU Yizi, LI Rui, et al. Experimental study on mechanical characteristics of sandstone under drying-wetting cycles and dynamic compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1): 3558-3566.
    [10]
    周昌台, 谢和平, 朱建波. 基于能量理论的岩石动态破坏准则[J]. 岩石力学与工程学报, 2023, 42(8): 1890-1898.

    ZHOU Changtai, XIE Heping, ZHU Jianbo. A dynamic strength criterion of rock materials based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(8): 1890-1898. (in Chinese)
    [11]
    BRUNING T, KARAKUS M, NGUYEN G D, et al. Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control[J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3321-3341.
    [12]
    赵志红, 金浩增, 郭建春, 等. 水化作用下深层页岩软化本构模型研究[J]. 岩石力学与工程学报, 2022, 41(增刊2): 3189-3197.

    ZHAO Zhihong, JIN Haozeng, GUO Jianchun, et al. Study on softening constitutive model of deep shale under hydration[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3189-3197. (in Chinese)
    [13]
    张超, 俞缙, 白允, 等. 基于强度理论的岩石脆延转化统计损伤本构模型[J]. 岩石力学与工程学报, 2023, 42(2): 307-316.

    ZHANG Chao, YU Jin, BAI Yun, et al. Statistical damage constitutive model of rock brittle-ductile transition based on strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 307-316. (in Chinese)
    [14]
    GARCIA-RIOS M, LUQUOT L, SOLER J M, et al. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414: 95-108.
    [15]
    PARK H S, HWANG D, SEO J K. Metal artifact reduction for polychromatic X-ray CT based on a beam-hardening corrector[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 480-487.
    [16]
    ENGEL K J, SPIES L, VOGTMEIER G, et al. Impact of CT detector pixel-to-pixel crosstalk on image quality[C]// Medical Imaging 2006: Physics of Medical Imaging. San Diego, 2006.
    [17]
    黄达, 谭清, 黄润秋. 高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究[J]. 岩石力学与工程学报, 2012, 31(12): 2483-2493.

    HUANG Da, TAN Qing, HUANG Runqiu. Mechanism of strain energy conversion process for marble damage and fracture under high stress and rapid unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2483-2493. (in Chinese)
    [18]
    党志, 侯瑛. 玄武岩-水相互作用的溶解机理研究[J]. 岩石学报, 1995, 11(1): 9-15.

    DANG Zhi, HOU Ying. Experimental study on the dissolution kinetics of basalt-water interaction[J]. Acta Petrologica Sinica, 1995, 11(1): 9-15. (in Chinese)
    [19]
    LEMAITRE J. A course on Damage Mechanics[M]. Berlin: Springer, 1996.
    [20]
    傅晏. 干湿循环水岩相互作用下岩石劣化机理研究[D]. 重庆: 重庆大学, 2010.

    FU Yan. Study on the Mechanism of Rock Deterioration under the Interaction of Dry-Wet Circulating Water and Rock[D]. Chongqing: Chongqing University, 2010. (in Chinese)
    [21]
    WANG Z L, LI Y C, WANG J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences, 2007, 33(1): 1-9.
  • Cited by

    Periodical cited type(7)

    1. 萧和,冯健雪,马秀如,张小勇,王林均,黄宝涛. 桩-土相互作用研究进展. 土工基础. 2024(03): 453-458 .
    2. 姜彦彬,何宁,李国维,吴哲辉,汪璋淳. 在机加载条件下桩承式路堤离心模型试验设计. 科学技术与工程. 2024(19): 8201-8207 .
    3. 郭帅杰,周亚东,宋绪国. 三角形布桩桩网复合地基桩土应力计算方法. 应用基础与工程科学学报. 2024(06): 1597-1609 .
    4. 姜彦彬,何斌,王艳芳,陈盛原,何宁. 桩承式路堤桩帽顶面土压测试代表性分析. 公路. 2022(04): 1-7 .
    5. 李威,周春儿,吴加武,董华钢,任红磊. 重载堆场桩网复合地基离心模型试验与数值模拟研究. 岩土工程学报. 2022(S2): 71-75 . 本站查看
    6. 李立,曹文昭,刘洋,郑俊杰,李波. 桩承式加筋土结构拓宽路基工作特性离心模型试验. 岩石力学与工程学报. 2021(S2): 3357-3366 .
    7. 邱晓光. 复合地基技术在市政道路软弱路基处治中的应用. 江西建材. 2021(12): 175-177 .

    Other cited types(5)

Catalog

    Article views (292) PDF downloads (72) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return