• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

正断型断裂模拟及其对山岭隧道影响研究

汪振, 钟紫蓝, 赵密, 杜修力, 黄景琦

汪振, 钟紫蓝, 赵密, 杜修力, 黄景琦. 正断型断裂模拟及其对山岭隧道影响研究[J]. 岩土工程学报, 2020, 42(10): 1876-1884. DOI: 10.11779/CJGE202010013
引用本文: 汪振, 钟紫蓝, 赵密, 杜修力, 黄景琦. 正断型断裂模拟及其对山岭隧道影响研究[J]. 岩土工程学报, 2020, 42(10): 1876-1884. DOI: 10.11779/CJGE202010013
WANG Zhen, ZHONG Zi-lan, ZHAO Mi, DU Xiu-li, HUANG Jing-qi. Simulation of normal fault rupture and its impact on mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1876-1884. DOI: 10.11779/CJGE202010013
Citation: WANG Zhen, ZHONG Zi-lan, ZHAO Mi, DU Xiu-li, HUANG Jing-qi. Simulation of normal fault rupture and its impact on mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1876-1884. DOI: 10.11779/CJGE202010013

正断型断裂模拟及其对山岭隧道影响研究  English Version

基金项目: 

国家自然科学基金项目 51678015

广东省地震工程与应用技术重点实验室开放基金项目 2017B030314068

详细信息
    作者简介:

    汪振(1993—),男,博士研究生,主要从事隧道等地下结构性能研究。E-mail:wangzhenSKG@126.com

    通讯作者:

    赵密, E-mail:zhaomi@bjut.edu.cn

  • 中图分类号: U45

Simulation of normal fault rupture and its impact on mountain tunnels

  • 摘要: 活动断层的运动和与其相交山岭隧道的震害密切相关,是隧道抗震设计所面临的严峻挑战之一。为此,以滇中引水工程香炉山隧洞为研究背景,运用断裂力学中的黏性界面模型结合有限元方法模拟正断层破裂过程。通过震害调查和试验结果对三维自由场的响应进行验证。进一步建立跨断层隧道三维数值分析模型探讨了不同断层错动量和倾角对隧道响应的影响规律,并引入损伤指数建立隧道安全评价的分类标准对结构的震害进行初步评估。结果表明:正断层错动所引起的地表破裂机制主要有弯曲陡坎和断裂陡坎;隧道衬砌的轴向拉应变和环向剪应变在其与断层滑动面相交位置处达到最大;断层错动量和倾角的变化对隧道不同震害状态沿纵向分布有明显影响;随断层倾角的增大,隧道衬砌处于严重损伤和完全损毁状态的长度要明显减小,断层倾角在50°~70°时对结构安全更为不利。
    Abstract: The seismic damage of mountain tunnels is closely associated with the movement of active faults. Seismic design of tunnels crossing active faults is one of the great challenges nowadays. Based on the engineering prototype of the Xianglu mountain tunnel, the water diversion project in central Yunnan Province, a numerical method to simulate the propagation of normal fault rupture is proposed using the finite element method incorporated with the cohesive interface model in fracture mechanics. The proposed method is verified against the post-earthquake reconnaissance and experimental results using the three-dimensional free-field model. It is used to simulate a tunnel crossing a normal fault, and the effects of fault displacement and dip angle on the response of the tunnel linings are discussed. Besides, the damage indices and safety assessment criteria are introduced to preliminarily evaluate the damage of the tunnel linings subjected to fault movement. The results show that the mechanisms of surface rupture exhibit the forms of folding or fault scarps under normal faulting. The axial tensile strain and hoop shear strain of the tunnel linings reach the maximum at the position where they intersect the fault slip surface. The seismic damage state of tunnel along the longitudinal direction is significantly affected by the fault displacement and dip angle. The length of the tunnel linings in a severely damaged and completely damaged state is significantly reduced with the increase of the dip angle. Dip angles of 50° to 70° are more detrimental to structural safety.
  • 图  1   香炉山隧洞引水工程地质剖面图

    Figure  1.   Geological profile of Xianglu mountain tunnel

    图  2   钻爆法施工隧洞支护结构图

    Figure  2.   Schematic of tunnel supporting system constructed by drilling and blasting method

    图  3   黏性界面单元COH3D8空间示意图

    Figure  3.   Spatial representation of a three-dimensional cohesive interface element COH3D8

    图  4   黏性界面单元双线性本构模型

    Figure  4.   Bilinear constitutive model of cohesive interface element

    图  5   三维自由场数值分析模型

    Figure  5.   Three-dimensional numerical model of free-field condition

    图  6   正断层错动下自由场工况的等效塑性应变云图

    Figure  6.   Equivalent plastic strain contours of free-field condition under normal fault rupture

    图  7   汶川地震中“正断层”性质的地表破裂图

    Figure  7.   Surface rupture with features of “normal fault” in Wenchuan earthquake

    图  8   文献[5]的有限元分析与试验结果对比

    Figure  8.   Comparison between finite element analysis and test results of Reference [5]

    图  9   断层—隧道三维数值分析模型

    Figure  9.   Three-dimensional numerical model for a tunnel crossing a fault

    图  10   不同错动量下隧道直径变形率

    Figure  10.   Deformation ratios of tunnel diameter at different fault displacements

    图  11   不同错动量下隧道轴向应变云图

    Figure  11.   Axial strain contours of tunnel at different fault displacements

    图  12   不同错动量下隧道环向剪应变云图

    Figure  12.   Hoop shear strain contours of tunnel at different fault displacements

    图  13   不同错动量下OLDT变化规律

    Figure  13.   Distribution of OLDT at different fault displacements

    图  14   不同倾角下隧道直径变形率

    Figure  14.   Deformation ratios of tunnel diameter at different dip angles

    图  15   不同倾角下隧道轴向应变云图

    Figure  15.   Axial strain contours of tunnel at different dip angles

    图  16   不同倾角下隧道环向剪应变云图

    Figure  16.   Hoop shear strain contours of tunnel at different dip angles

    图  17   不同倾角下OLDT变化规律

    Figure  17.   Distribution of OLDT at different dip angles

    表  1   鹤庆—洱源断裂岩石的力学参数

    Table  1   Geomechanical parameters of Heqing-Eryuan fault

    类型密度ρ/(103kg·m-3)弹性模量E/GPa剪切模量G/GPa泊松比内摩擦角φ/(°)黏聚力c/MPa抗拉强度ft/MPa抗剪强度τ/MPa断裂能G/(N·m-1)
    完整岩石2.97.50.28451.1
    断层破碎带2.11.50.560.33290.150.10.320
    下载: 导出CSV

    表  2   混凝土损伤塑性模型力学参数

    Table  2   Mechanical parameters of concrete damaged plasticity model

    参数数值
    密度ρ/(kg·m-3)2.5×103
    弹性模量E/GPa30
    泊松比0.2
    剪胀角ψ/(°)36.31
    压缩屈服应力fc/MPa20.1
    拉伸屈服应力ft/MPa2.01
    下载: 导出CSV
  • [1] 洪开荣. 中国隧道及地下工程近两年的发展与展望[J]. 隧道建设, 2017, 37(2): 123-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201702002.htm

    HONG Kai-rong. Development and prospects of tunnels and underground works in china in recent two years[J]. Tunnel Construction, 2017, 37(2): 123-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201702002.htm

    [2] 钮新强, 张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J]. 隧道建设, 2019, 39(4): 523-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm

    NIU Xin-qiang, ZHANG Chuan-jian. Some key technical issues on construction of ultra-long deep-buried water conveyance tunnel under complex geological conditions[J]. Tunnel Construction, 2019, 39(4): 523-536. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm

    [3] 何川, 李林, 张景, 等. 隧道穿越断层破碎带震害机理研究[J]. 岩土工程学报, 2014, 36(3): 427-434. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403006.htm

    HE Chuan, LI Lin, ZHANG Jing, et al. Seismic damage mechanism of tunnels through fault zones[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 427-434. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403006.htm

    [4] 崔光耀, 王明年, 于丽, 等. 汶川地震断层破碎带段隧道结构震害分析及震害机理研究[J]. 土木工程学报, 2013, 46(11): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm

    CUI Guang-yao, WANG Ming-nian, YU Li, et al. Study on the characteristics and mechanism of seismic damage for tunnel structures on fault rupture zone in Wenchuan seismic disastrous area[J]. China Civil Engineering Journal, 2013, 46(11): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm

    [5]

    KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108-119. doi: 10.1016/j.tust.2015.10.005

    [6]

    CAI Q P, PENG J M, NG C W W, et al. Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand[J]. Computers and Geotechnics, 2019, 111: 137-146. doi: 10.1016/j.compgeo.2019.03.010

    [7] 王道远, 崔光耀, 袁金秀, 等. 断裂黏滑错动下隧道减错措施作用效果模型试验研究[J]. 岩土工程学报, 2018, 40(8): 1515-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808021.htm

    WANG Dao-yuan, CUI Guang-yao, YUAN Jin-xiu, et al. Model tests on effect of dislocation reducing measures of stick-slip fault of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1515-1521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808021.htm

    [8] 孙飞, 张志强, 易志伟. 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学, 2019, 40(9): 3037-3044, 3053. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908020.htm

    SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study on the influence of normal fault with stick-slip dislocation on the structure of subway tunnel[J]. Rock and Soil Mechanics, 2019, 40(9): 3037-3044, 3053. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908020.htm

    [9]

    SABAGH M, GHALANDARZADEH A. Centrifugal modeling of continuous shallow tunnels at active normal faults intersection[J]. Transportation Geotechnics, 2020, 22: 100325.

    [10]

    YAN G M, SHEN Y S, GAO B, et al. Damage evolution of tunnel lining with steel reinforced rubber joints under normal faulting: an experimental and numerical investigation[J]. Tunnelling and Underground Space Technology, 2020, 97: 103223.

    [11] 刘学增, 林亮伦, 桑运龙. 逆断层粘滑错动对公路隧道的影响[J]. 同济大学学报(自然科学版), 2012, 40(7): 1008-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201207009.htm

    LIU Xue-zeng, LIN Liang-lun, SANG Yun-long. Effect of thrust fault stick-slip rupture on road tunnel[J]. Journal of Tongji University(Natural Science), 2012, 40(7): 1008-1014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201207009.htm

    [12]

    CHANG Y Y, LEE C J, HUANG W C, et al. Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand[J]. Engineering Geology, 2015, 184: 52-70.

    [13]

    BAZIAR M H, NABIZADEH A, MEHRABI R, et al. Evaluation of underground tunnel response to reverse fault rupture using numerical approach[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 1-17.

    [14] 焦鹏飞, 来弘鹏. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报, 2019, 52(2): 106-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201902011.htm

    JIAO Peng-fei, LAI Hong-peng. Theoretical analysis on the influence of different dip angle reverse faults' dislocation on tunnel structure[J]. China Civil Engineering Journal, 2019, 52(2): 106-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201902011.htm

    [15]

    ZHAO K, CHEN W Z, YANG D S, et al. Mechanical tests and engineering applicability of fibre plastic concrete used in tunnel design in active fault zones[J]. Tunnelling and Underground Space Technology, 2019, 88: 200-208.

    [16]

    ZAHERI M, RANJBARNIA M, DIAS D, et al. Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting[J]. Transportation Geotechnics, 2020, 23: 100333.

    [17]

    FOSSEN H. Structural Geology[M]. New York: Cambridge University Press, 2010.

    [18]

    ZHANG Z Q, CHEN F F, LI N, et al. Influence of fault on the surrounding rock stability of a tunnel: location and thickness[J]. Tunnelling and Underground Space Technology, 2017, 61: 1-11.

    [19] 宋佳佳, 孙建孟, 王敏, 等. 断层内部结构研究进展[J]. 地球物理学进展, 2018, 33(5): 1956-1966. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805024.htm

    SONG Jia-jia, SUN Jian-meng, WANG Min, et al. Research progress in the internal structure of the fault[J]. Progress in Geophysics, 2018, 33(5): 1956-1966. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805024.htm

    [20]

    HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-1186.

    [21] 中国地震局地壳应力研究所. 2008年汶川8.0级地震科学考察图集[M]. 北京: 地震出版社, 2009.

    The Institute of Crustal Dynamics, CEA. Scientific Investigation Album of the Wenchuan MS 8.0 Earthquake of 2008[M]. Beijing: Seismological Press, 2009. (in Chinese)

    [22]

    Code of Practice for Temporary Works Procedures and the Permissible Stress Design of Falsework: BS5975—2008[S]. 2008.

    [23] 公路隧道设计细则:JTG/T D70—2010[S]. 2010.

    Guidelines for Design of Highway Tunnel: JTG/T D70—2010[S]. 2010. (in Chinese)

    [24] 地下结构抗震设计标准:GB/T 51336—2018[S]. 2019.

    Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. 2019. (in Chinese)

    [25]

    CHEN Z Y, WEI J S. Correlation between ground motion parameters and lining damage indices for mountain tunnels[J]. Natural Hazards, 2013, 65: 1683-1702.

    [26]

    WANG Z Z, ZHANG Z. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2013, 45: 45-55.

    [27]

    Federal Emergency Management Agency. Multi-Hazard Loss Estimation Methodology: Earthquake Model HAZUS-MH 2.1 User Manual[R]. Washington D C: FEMA Mitigation Division, 2010.

    [28] 刘国庆, 肖明, 陈俊涛. 基于增量动力分析的隧洞结构抗震性能评估[J]. 工程科学与技术, 2019, 51(3): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903012.htm

    LIU Guo-qing, XIAO Ming, CHEN Jun-tao. Seismic performance assessment of tunnel structure based on incremental dynamic analysis[J]. Advanced Engineering Sciences, 2019, 51(3): 92-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903012.htm

图(17)  /  表(2)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  26
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-02
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回