• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhen, ZHONG Zi-lan, ZHAO Mi, DU Xiu-li, HUANG Jing-qi. Simulation of normal fault rupture and its impact on mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1876-1884. DOI: 10.11779/CJGE202010013
Citation: WANG Zhen, ZHONG Zi-lan, ZHAO Mi, DU Xiu-li, HUANG Jing-qi. Simulation of normal fault rupture and its impact on mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1876-1884. DOI: 10.11779/CJGE202010013

Simulation of normal fault rupture and its impact on mountain tunnels

More Information
  • Received Date: February 02, 2020
  • Available Online: December 07, 2022
  • The seismic damage of mountain tunnels is closely associated with the movement of active faults. Seismic design of tunnels crossing active faults is one of the great challenges nowadays. Based on the engineering prototype of the Xianglu mountain tunnel, the water diversion project in central Yunnan Province, a numerical method to simulate the propagation of normal fault rupture is proposed using the finite element method incorporated with the cohesive interface model in fracture mechanics. The proposed method is verified against the post-earthquake reconnaissance and experimental results using the three-dimensional free-field model. It is used to simulate a tunnel crossing a normal fault, and the effects of fault displacement and dip angle on the response of the tunnel linings are discussed. Besides, the damage indices and safety assessment criteria are introduced to preliminarily evaluate the damage of the tunnel linings subjected to fault movement. The results show that the mechanisms of surface rupture exhibit the forms of folding or fault scarps under normal faulting. The axial tensile strain and hoop shear strain of the tunnel linings reach the maximum at the position where they intersect the fault slip surface. The seismic damage state of tunnel along the longitudinal direction is significantly affected by the fault displacement and dip angle. The length of the tunnel linings in a severely damaged and completely damaged state is significantly reduced with the increase of the dip angle. Dip angles of 50° to 70° are more detrimental to structural safety.
  • [1]
    洪开荣. 中国隧道及地下工程近两年的发展与展望[J]. 隧道建设, 2017, 37(2): 123-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201702002.htm

    HONG Kai-rong. Development and prospects of tunnels and underground works in china in recent two years[J]. Tunnel Construction, 2017, 37(2): 123-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201702002.htm
    [2]
    钮新强, 张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J]. 隧道建设, 2019, 39(4): 523-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm

    NIU Xin-qiang, ZHANG Chuan-jian. Some key technical issues on construction of ultra-long deep-buried water conveyance tunnel under complex geological conditions[J]. Tunnel Construction, 2019, 39(4): 523-536. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm
    [3]
    何川, 李林, 张景, 等. 隧道穿越断层破碎带震害机理研究[J]. 岩土工程学报, 2014, 36(3): 427-434. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403006.htm

    HE Chuan, LI Lin, ZHANG Jing, et al. Seismic damage mechanism of tunnels through fault zones[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 427-434. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403006.htm
    [4]
    崔光耀, 王明年, 于丽, 等. 汶川地震断层破碎带段隧道结构震害分析及震害机理研究[J]. 土木工程学报, 2013, 46(11): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm

    CUI Guang-yao, WANG Ming-nian, YU Li, et al. Study on the characteristics and mechanism of seismic damage for tunnel structures on fault rupture zone in Wenchuan seismic disastrous area[J]. China Civil Engineering Journal, 2013, 46(11): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm
    [5]
    KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108-119. doi: 10.1016/j.tust.2015.10.005
    [6]
    CAI Q P, PENG J M, NG C W W, et al. Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand[J]. Computers and Geotechnics, 2019, 111: 137-146. doi: 10.1016/j.compgeo.2019.03.010
    [7]
    王道远, 崔光耀, 袁金秀, 等. 断裂黏滑错动下隧道减错措施作用效果模型试验研究[J]. 岩土工程学报, 2018, 40(8): 1515-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808021.htm

    WANG Dao-yuan, CUI Guang-yao, YUAN Jin-xiu, et al. Model tests on effect of dislocation reducing measures of stick-slip fault of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1515-1521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808021.htm
    [8]
    孙飞, 张志强, 易志伟. 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学, 2019, 40(9): 3037-3044, 3053. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908020.htm

    SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study on the influence of normal fault with stick-slip dislocation on the structure of subway tunnel[J]. Rock and Soil Mechanics, 2019, 40(9): 3037-3044, 3053. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908020.htm
    [9]
    SABAGH M, GHALANDARZADEH A. Centrifugal modeling of continuous shallow tunnels at active normal faults intersection[J]. Transportation Geotechnics, 2020, 22: 100325.
    [10]
    YAN G M, SHEN Y S, GAO B, et al. Damage evolution of tunnel lining with steel reinforced rubber joints under normal faulting: an experimental and numerical investigation[J]. Tunnelling and Underground Space Technology, 2020, 97: 103223.
    [11]
    刘学增, 林亮伦, 桑运龙. 逆断层粘滑错动对公路隧道的影响[J]. 同济大学学报(自然科学版), 2012, 40(7): 1008-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201207009.htm

    LIU Xue-zeng, LIN Liang-lun, SANG Yun-long. Effect of thrust fault stick-slip rupture on road tunnel[J]. Journal of Tongji University(Natural Science), 2012, 40(7): 1008-1014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201207009.htm
    [12]
    CHANG Y Y, LEE C J, HUANG W C, et al. Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand[J]. Engineering Geology, 2015, 184: 52-70.
    [13]
    BAZIAR M H, NABIZADEH A, MEHRABI R, et al. Evaluation of underground tunnel response to reverse fault rupture using numerical approach[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 1-17.
    [14]
    焦鹏飞, 来弘鹏. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报, 2019, 52(2): 106-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201902011.htm

    JIAO Peng-fei, LAI Hong-peng. Theoretical analysis on the influence of different dip angle reverse faults' dislocation on tunnel structure[J]. China Civil Engineering Journal, 2019, 52(2): 106-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201902011.htm
    [15]
    ZHAO K, CHEN W Z, YANG D S, et al. Mechanical tests and engineering applicability of fibre plastic concrete used in tunnel design in active fault zones[J]. Tunnelling and Underground Space Technology, 2019, 88: 200-208.
    [16]
    ZAHERI M, RANJBARNIA M, DIAS D, et al. Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting[J]. Transportation Geotechnics, 2020, 23: 100333.
    [17]
    FOSSEN H. Structural Geology[M]. New York: Cambridge University Press, 2010.
    [18]
    ZHANG Z Q, CHEN F F, LI N, et al. Influence of fault on the surrounding rock stability of a tunnel: location and thickness[J]. Tunnelling and Underground Space Technology, 2017, 61: 1-11.
    [19]
    宋佳佳, 孙建孟, 王敏, 等. 断层内部结构研究进展[J]. 地球物理学进展, 2018, 33(5): 1956-1966. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805024.htm

    SONG Jia-jia, SUN Jian-meng, WANG Min, et al. Research progress in the internal structure of the fault[J]. Progress in Geophysics, 2018, 33(5): 1956-1966. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805024.htm
    [20]
    HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-1186.
    [21]
    中国地震局地壳应力研究所. 2008年汶川8.0级地震科学考察图集[M]. 北京: 地震出版社, 2009.

    The Institute of Crustal Dynamics, CEA. Scientific Investigation Album of the Wenchuan MS 8.0 Earthquake of 2008[M]. Beijing: Seismological Press, 2009. (in Chinese)
    [22]
    Code of Practice for Temporary Works Procedures and the Permissible Stress Design of Falsework: BS5975—2008[S]. 2008.
    [23]
    公路隧道设计细则:JTG/T D70—2010[S]. 2010.

    Guidelines for Design of Highway Tunnel: JTG/T D70—2010[S]. 2010. (in Chinese)
    [24]
    地下结构抗震设计标准:GB/T 51336—2018[S]. 2019.

    Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. 2019. (in Chinese)
    [25]
    CHEN Z Y, WEI J S. Correlation between ground motion parameters and lining damage indices for mountain tunnels[J]. Natural Hazards, 2013, 65: 1683-1702.
    [26]
    WANG Z Z, ZHANG Z. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2013, 45: 45-55.
    [27]
    Federal Emergency Management Agency. Multi-Hazard Loss Estimation Methodology: Earthquake Model HAZUS-MH 2.1 User Manual[R]. Washington D C: FEMA Mitigation Division, 2010.
    [28]
    刘国庆, 肖明, 陈俊涛. 基于增量动力分析的隧洞结构抗震性能评估[J]. 工程科学与技术, 2019, 51(3): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903012.htm

    LIU Guo-qing, XIAO Ming, CHEN Jun-tao. Seismic performance assessment of tunnel structure based on incremental dynamic analysis[J]. Advanced Engineering Sciences, 2019, 51(3): 92-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903012.htm
  • Related Articles

    [1]Characteristic functions of regional soils: difference[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240808
    [2]YUAN Xiaoming, LU Kunyu, LI Zhaoyan, CHEN Zhoushi, WU Xiaoyang. Characteristic functions of regional soils: convergence[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 26-34. DOI: 10.11779/CJGE20221254
    [3]YE Yun-xue, ZOU Wei-lie, YUAN Fei, LIU Jia-guo. Predicating soil-water characteristic curves of soils with different initial void ratios based on a pedotransfer function[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2305-2311. DOI: 10.11779/CJGE201812019
    [4]NIE Qing-ke, JIA Xiang-xin, QIN Lu-sheng, WANG Ying-hui, LIANG Shu-qi. Field tests on the effects of diameter of drill pipe on number N of SPT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 53-58. DOI: 10.11779/CJGE2017S1011
    [5]HU Ya-yuan. Failure mechanism of associated flow rule for nth homogenous yield function[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 243-251.
    [6]WANG Hongbo, SHAO Longtan, XIONG Baolin. Improved method to determine parameters n and hs of a hypoplastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1173-1176.
    [7]WANG Shijie, HE Manchao, ZHANG Jizhan. Estimation of relative density of sandy soil by normalized SPT-N blow count[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 682-685.
    [8]YE Shujun, XUE Yuqun, ZHANG Yun, LI Qinfen, WANG Hanmei. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 140-147.
    [9]Huang Wen-xi, Pu Jia-liu, Chen Yu-jiong. Hardening Rule and Yield Function for Soils[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(3): 19-26.
    [10]SU He-yuan. 抽、灌水作用下上海土层变形特征的探讨[J]. Chinese Journal of Geotechnical Engineering, 1979, 1(1): 24-35.
  • Cited by

    Periodical cited type(5)

    1. 郑刚,张文彬,赵继辉,周海祚. 桩-承台不同连接方式下的桩基-结构动力响应离心机振动台试验研究. 建筑结构学报. 2025(01): 204-211+222 .
    2. 王永志,汤兆光,张雪东,孙锐,张宇亭. 超重力离心模型试验中孔隙水压测试影响因素与标定方法. 岩石力学与工程学报. 2022(S2): 3433-3443 .
    3. 汤兆光,王永志,段雪锋,孙锐,王体强. 分体高频响应微型孔隙水压力传感器研制与性能评价. 岩土工程学报. 2021(07): 1210-1219+1375-1376 . 本站查看
    4. 孔维伟,贾妍,卢娜. 基于PVDF压力传感器的三维流速仪的流速模拟分析. 新型工业化. 2021(06): 205+230 .
    5. 汤兆光,王永志,孙锐,段雪锋,王体强,王浩然. 动力离心试验微型孔压传感器研制与性能验证. 岩土工程学报. 2020(S2): 129-134 . 本站查看

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return