双尺度渐进展开计算黏土渗透率影响因素研究

    周力沛, 唐晓武, 程冠初, 孙祖峰

    周力沛, 唐晓武, 程冠初, 孙祖峰. 双尺度渐进展开计算黏土渗透率影响因素研究[J]. 岩土工程学报, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006
    引用本文: 周力沛, 唐晓武, 程冠初, 孙祖峰. 双尺度渐进展开计算黏土渗透率影响因素研究[J]. 岩土工程学报, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006
    ZHOU Li-pei, TANG Xiao-wu, CHENG Guan-chu, SUN Zu-feng. Influencing factors for calculating clay permeability using asymptotic expansion method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006
    Citation: ZHOU Li-pei, TANG Xiao-wu, CHENG Guan-chu, SUN Zu-feng. Influencing factors for calculating clay permeability using asymptotic expansion method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006

    双尺度渐进展开计算黏土渗透率影响因素研究  English Version

    基金项目: 浙江省文物保护科技创新项目(2013010)
    详细信息
      作者简介:

      周力沛(1987- ),男,博士,主要从事渗流计算、桩基工程、土遗址保护技术等方面的科研。E-mail:zhoulipeiwushuang@hotmail.com。

      通讯作者:

      唐晓武,E-mail:tangxiaowu@zju.edu.cn

    • 中图分类号: TU442

    Influencing factors for calculating clay permeability using asymptotic expansion method

    • 摘要: 在岩土工程中,可采用双尺度渐进展开法反演计算土体渗透率,其表征单元体(REV)的选取直接影响计算的准确度。以海洋黏土渗透率为例,对REV颗粒形状、排列方式、建模维度以及对土体实际性状代表性等因素进行对比分析。通过4种正多边形模型对比、圆形颗粒正对排布与交错排布对比、3D与2D模型对比,计算结果均与实测值存在较大偏差,而各对比模型彼此间差别不大,说明颗粒形状、排列方式与模型维度对计算准确度影响甚微。而在考虑黏土颗粒多呈扁平状,以及颗粒表面存在强结合水膜的情况下,采用椭圆颗粒结合水膜单元模型(E-W模型),其计算准确度大大提高,并且能够在孔隙比较小时减小结合水膜带来的计算误差,说明REV能否充分表示土体实际几何和物理特性是计算准确度的主要影响因素。E-W模型对高岭土与伊利土渗透率的计算同样有较高的准确度,因此可将其用作双尺度渐进展开法对黏土渗透率的计算REV模型。
      Abstract: The determination of representative elemental volume (REV) directly affects the calculating accuracy in permeability calculation for clay using the asymptotic expansion method in geotechnical engineering. Using the sea clay as an example, the influencing factors are studied and compared. By contrasting the results of 4 different types of regular polygon models, and different unit arrangements which are parallel and staggered and different models in 2D and 3D, the calculated permeabilities show large deviations to the measured ones but little differences among each model. It is illustrated that the shape, arrangement and dimensions of the models have little influences in the calculating accuracy. The proposed elliptical particle combined with water film model (E-W model), which takes the consideration of the flattened shape of clay particles and the strong bound water wrapping around them, well improves the accuracy. The representativeness of the physical characteristics of the clay particles is the main influencing factor of REV. The calculated permeabilities of kaolin and illite clay also exhibit high accuracy, which shows that the E-W model can be widely used in the permeability calculation for clay using the asymptotic expansion method.
    • [1] ANDREASSEN E, ANDREASEN C S.How to determine composite materials properties using numerical homogenization[J]. Computational Materials Science, 2014, 83: 488-495.
      [2] KEIP M A, STEINMANN P, SCHRODER J.Two-scale computational homogenization of electro-elasticity at finite strains[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278: 62-79.
      [3] BEAR J.Dynamics of fluids in porous media[M]. New York: Dover Publications, 1988.
      [4] 吉泽升, 朱荣凯, 李丹. 传输原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2002.
      (JI Ze-sheng, ZHU Rong-kai, LI Dan.Principle of transmission[M]. Harbin: Harbin Institute of Technology Press, 2002. (in Chinese))
      [5] 严宗毅. 低雷诺数流理论[M]. 北京: 北京大学出版社, 2002.
      (YAN Zong-yi.Theory of low reynolds number flows[M]. Beijing: Peking University Press, 2002. (in Chinese))
      [6] DASGUPTA A, AGARWAL R K.Oithotropic thermal conductivity of plain-wave fabric composites using a homogenization technique[J]. Journal of Composite Materials 1992, 26(18): 2736-2758.
      [7] WANG J G, LEUNG C F, ICHIKAWA Y.A simplified homogenization method for composite soils[J]. Computers and Geotechnics, 2002, 29: 477-500.
      [8] TANG X W, CHENG G C, CHEN Y M.An-easy-to implement multi-scale computation of permeability coefficient for porous materials[J]. Microporous and Mesoporous Materials, 2010, 130(13): 274-279.
      [9] SUN Z F, TANG X W, CHENG G C.Inversion calculation of permeability coefficient with the multi-scale asymptotic expansion method[J]. Poromechanics V, ASCE, 2013: 2212-2221.
      [10] BELIAEV A Y, KOZLOV S M.Darcy equation for random porous media[J]. Communications on Pure and Applied Mathematics 1996, 49: 1-34.
      [11] ESPEDAL M S, FASANO A, MIKELIC A.Filtration in porous media and industrial application[M]// Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2000.
      [12] TAVENAS F, JEAN P, LEBLOND P, et al.The permeability of natural soft clays part II: permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660.
      [13] AL-TABBAA A, WOOD D M.Some measurements of the permeability of kaolin[J]. Géotechnique, 1987, 37(4): 499-514.
      [14] MESRI G.Mechanisms controlling the permeability of clays[J]. Clays and Clay minerals, 1971, 19: 151-158.
      [15] ASTM D2434. ASTM Annual book of standards[S]. Philadelphia: American Society for Testing & Materials, 2002.
      [16] ASTM D5084. ASTM Annual book of standards[S]. Philadelphia: American Society for Testing & Materials, 2002.
      [17] ASTM D5856. ASTM Annual book of standards[S]. Philadelphia: American Society for Testing & Materials, 2002.
      [18] 龚晓南. 高等土力学[M]. 杭州: 浙江大学出版社, 1996.
      (GONG Xiao-nan.Advanced soil mechanics[M]. Hangzhou: Zhejiang University Press, 1996. (in Chinese))
      [19] BRADY N C, WEIL R R.The Nature and properties of soils[M]. New Jersey: Prentice Hall, 1974.
    计量
    • 文章访问数:  324
    • HTML全文浏览量:  10
    • PDF下载量:  167
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-04-12
    • 发布日期:  2018-07-24

    目录

      /

      返回文章
      返回