• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

离散元中破碎自组织对颗粒破碎影响研究

张科芬, 张升, 滕继东, 盛岱超

张科芬, 张升, 滕继东, 盛岱超. 离散元中破碎自组织对颗粒破碎影响研究[J]. 岩土工程学报, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019
引用本文: 张科芬, 张升, 滕继东, 盛岱超. 离散元中破碎自组织对颗粒破碎影响研究[J]. 岩土工程学报, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019
ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019
Citation: ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019

离散元中破碎自组织对颗粒破碎影响研究  English Version

基金项目: 国家重点基础研究发展计划(“ 973 ” 计划) 项目(2014CB047001); 中南大学研究生自主探索创新项目(2017zzts520)
详细信息
    作者简介:

    张科芬(1993- ),女,硕士,主要从事岩土材料颗粒破碎特性等方面的研究。E-mail:kfzhang0314@163.com。

    通讯作者:

    张升,E-mail:zhang-sheng@csu.edu.cn

  • 中图分类号: TU431

Influences of self-organization of granular materials on particle crushing based on discrete element method

  • 摘要: 从数学领域的阿波罗填充法入手,建立了4种破碎自组织,并借助线性膨胀法保证破碎前后质量守恒。在此基础上,开展了不同破碎自组织的数值试验,研究了破碎自组织对级配演化以及材料的宏细观力学特性等的影响。结果表明:颗粒级配曲线的分形维数和颗粒间的平均应力随破碎自组织中颗粒数目增多而下降,而相对破碎率Br和材料的压缩性随自组织中颗粒数目增多而增大。加载过程中的法向接触和接触力玫瑰图表明,自组织中颗粒数目愈多,材料的各向异性程度愈低,颗粒法向接触数目愈多,而法向接触力愈小。另外,配位数及接触力的概率密度也与破碎自组织存在密切联系。
    Abstract: Starting from the Apollonian sphere packing method in mathematics, four kinds of self-organization of breakage are established, and the linear expansion method is introduced to guarantee the mass conservation. On this basis, the numerical experiments on different self-organizations are carried out, and the influences of self-organization on gradation evolution and macro and micro mechanical behaviors of granular materials are studied. It is found that the fractal dimension and the average inter-particle stress decrease with the increase of fragment number, while the relative breakage Br and the compressibility increase with the increase of particle number in the self-organization. The anisotropic rose diagram of contact orientation and contact normal force show that the larger the number of particles in the self-organization is, the lower the anisotropy of the specimens at the end of loading is. In addition, the number of particle contact increases with the increase of self-organized particles, while the normal contact force decreases. Furthermore, the probability distributions of coordination number and contact force are also closely related to the self-organization of fragmentation.
  • [1] 孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35-40.
    (KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al.Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35-40. (in Chinese))
    [2] 蒋明镜, 孙渝刚. 考虑砂土颗粒破碎的圆孔扩张半解析分析[J]. 岩土工程学报, 2009, 31(11): 1645-1651.
    (JIANG Ming-jing, SUN Yu-gang.Semi-analytical solution to cavity expansion in crushable sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1645-1651. (in Chinese))
    [3] 张季如, 祝杰, 黄文竞, 等. 侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J]. 岩土工程学报, 2008, 30(6): 783-789.
    (ZHANG Ji-ru, ZHU Jie, HUANG Wen-jing, et al.Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789. (in Chinese))
    [4] SHENG D S, YAO Y Y, CARTER J P C P. A volume-stress model for sands under isotropic and critical stress st[J]. Canadian Geotechnical Journal, 2008, 45(11): 1639-1645.
    [5] YAO Y P, YAMAMOTO H, WANG N D.Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(2): 12-15.
    [6] 张家铭, 邵晓泉, 王霄龙, 等. 沉桩过程中钙质砂颗粒破碎特性模拟研究[J]. 岩土力学, 2015, 36(1): 272-278.
    (ZHANG Jia-ming, SHAOXiao-quan, WANG Xiao-long, et al. Discrete element simulation of crushing behavior ofcalcareous sands during pile jacking[J]. Rock and Soil Mechanics, 2015, 36(1): 272-278. (in Chinese))
    [7] THORNTON C, CIOMOCOS M T, ADAMS M J.Numerical simulations of agglomerate impact breakage[J]. Powder Technology, 1999, 105(1-3): 74-82.
    [8] 刘君, 刘福海, 孔宪京. 考虑破碎的堆石料颗粒流数值模拟[J]. 岩土力学, 2008, 29(增刊1): 111-116.
    (LIU Jun, LIU Fu-hai, KONG Xian-jing.Particle flow code numerical simulation of particle breakage of rockfill[J]. Rock and Soil Mechanics, 2008, 29(S1): 111-116. (in Chinese))
    [9] 史旦达, 周健, 贾敏才, 等. 考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J]. 岩土工程学报, 2007, 29(5): 736-742.
    (SHI Dan-da, ZHOU Jian, JIA Min-cai, et al.Numerical simulations of particle breakage property of sand under high pressure1D compression condition by use of particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 736-742. (in Chinese))
    [10] ZHOU W, YANG L, MA G, et al.Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17(4): 497-509.
    [11] MCDOWELL G R, DE BONO J P. On the micro mechanics of one-dimensional normal compression[J]. Géotechnique, 2013, 63(11): 895-908.
    [12] DE BONO J P, MCDOWELL G R, Particle breakage criteria in discrete-element modelling[J]. Géotechnique, 2016, 66(12): 1014-1027.
    [13] BEN-NUN O, EINAV I.The role of self-organization during confined comminution of granular materials[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 2010, 368(1910): 231-247.
    [14] ELGHEZAL L, JAMEI M, GEORGOPOULOS I O.DEM simulations of stiff and soft materials with crushable particles: an application of expanded perlite as a soft granular material[J]. Granular Matter, 2013, 15(5): 685-704.
    [15] RUSSELL A R, WOOD D M.Point load tests and strength measurements for brittle spheres[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 272-280.
    [16] 张科芬, 张升, 滕继东, 等. 颗粒破碎的三维离散元研究[J]. 岩土力学, 待刊.
    (ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, et al.A numerical study on particle breakage based on 3D discrete element method[J]. Rock and Soil Mechanics, in press.(in Chinese))
    [17] BORKOVEC M, DE PARIS W, PEIKERT R.The fractal dimension of the apollonian sphere packing[J]. Fractals, 1994, 2(4): 521-526.
    [18] TURCOTTE D L.Fractals and fragmentation[J]. Journal of Geophysical Research Solid Earth, 1986, 91(B2): 1921-1926.
    [19] EINAV I.Breakage mechanics—part I: theory[J]. Journal of the Mechanics & Physics of Solids, 2007, 55(6): 1274-1297.
    [20] MARSAL R J.Large-scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43.
    [21] LADE P V, YAMAMURO J A, BOPP P A.Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316.
    [22] ZHANG S, TONG C X, LI X, et al.A new method for studying the evolution of particle breakage[J]. Géotechnique, 2015, 65(11): 911-922.
    [23] HARDIN B O.Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [24] THORNTON C.Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53.
    [25] LIU C H, NAGEL S R, SCHECTER D A, et al.Force fluctuations in bead packs[J]. Science, 1995, 269(5223): 513-515.
计量
  • 文章访问数:  293
  • HTML全文浏览量:  14
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-17
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回