• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于颗粒椭球体理论的隧道松动土压力计算方法

宫全美, 张润来, 周顺华, 唐黎明, 韩高孝

宫全美, 张润来, 周顺华, 唐黎明, 韩高孝. 基于颗粒椭球体理论的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1): 99-105. DOI: 10.11779/CJGE201701008
引用本文: 宫全美, 张润来, 周顺华, 唐黎明, 韩高孝. 基于颗粒椭球体理论的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1): 99-105. DOI: 10.11779/CJGE201701008
GONG Quan-mei, ZHANG Run-lai, ZHOU Shun-hua, TANG Li-ming, HAN Gao-xiao. Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 99-105. DOI: 10.11779/CJGE201701008
Citation: GONG Quan-mei, ZHANG Run-lai, ZHOU Shun-hua, TANG Li-ming, HAN Gao-xiao. Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 99-105. DOI: 10.11779/CJGE201701008

基于颗粒椭球体理论的隧道松动土压力计算方法  English Version

基金项目: 国家自然科学基金项目(41472247)
详细信息
    作者简介:

    宫全美(1967- ),女,教授,博士生导师,主要从事铁道工程、线路动力学相关研究。E-mail: gongqm@tongji.edu.cn。

Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows

  • 摘要: 基于颗粒椭球体理论认为隧道上部松动区滑动面为椭圆形,据此推导出受滑动面倾角影响的侧土压力系数计算方法;在椭圆形松动区内竖向荷载沿水平向呈梯形分布,推导出隧道松动土压力计算方法。结果表明:当埋深低于极限椭圆高度时,松动区域为地面线以下的极限椭圆区域;当埋深达到极限椭圆高度时,松动区为整个极限椭圆,松动土压力不再增加。滑动面侧土压力系数是变化的,与滑动面倾角和土的摩擦角有关,随着内摩擦角增大而减小,随着滑动面倾角增大而增大。取值范围为0.2~0.8,介于主动土压力系数和Krynine侧土压力系数之间。本模型计算结果与实测数据较为吻合,可以用于隧道设计和施工中。
    Abstract: Based on the ellipsoid theory of particle flows, that is, an ellipse sliding face is presented in the loosening zone at upper part of tunnels, a method is deduced to calculate the lateral earth pressure coefficient related to the inclination of sliding face. Besides, the method for calculating the loosening earth pressure is proposed in consideration of horizontal trapezium distribution of vertical loads in the loosening zone. The results show that the loosening zone behaves at the part of the limit ellipse under the ground line with the burial depth less than the height of the limit ellipse and a whole ellipse with the burial depth reaching the height of the limit ellipse, in which the earth pressure gets the maximum value. The lateral earth pressure coefficient is variable, and it has a positive correlation with sliding surface inclination, however, it has a negative correlation with friction angle. Usually, it values from 0.2 to 0.8 and ranges from the active coefficient to the Krynine coefficient. The proposed results are more close to the existing test data and model test data, and they can be used in the design and construction of tunnels.
  • [1] TERZAGHI K. Theoretical soil mechanics[M]. New York: Wiley, 1943.
    [2] EVANS C H. An examination of arching in granular soils[D]. Cambridge: Massachusetts Institute of Technology, 1983.
    [3] TIEN Heisen-Jen. A literature study of the arching effect [D]. Taipei: Taiwan University, 1990: 123-125.
    [4] 周小文, 濮家骝, 包承纲. 砂土中隧洞开挖稳定机理及松动土压力研究[J]. 长江科学院院报, 1999(4): 10-15. (ZHOU Xiao-wen, PU Jia-liu, BAO Cheng-gang. Study on stability mechanism and relaxed soil pressure in sandy soil during excavation[J]. Journal of Yangtze River Scientific Research Institute, 1999(4): 10-15. (in Chinese))
    [5] SHUKLA S K, GAURAV, SIVAKUGAN N. A simplified extension of the conventional theory of arching in soils[J]. International Journal of Geotechnical Engineering, 2009, 3(3): 353-359.
    [6] 陈国舟, 周国庆. 考虑土拱效应的倾斜滑移面间竖向应力研究[J]. 岩土力学, 2013(9): 2643-2648. (CHEN Guo-zhou, ZHOU Guo-qing. Study of vertical stress between slip planes considering soil arching effect[J]. Journal of China University of Mining and Technology, 2013(9): 2643-2648. (in Chinese))
    [7] 加 瑞. 盾构隧道垂直土压力松动效应的研究[D]. 南京:河海大学, 2007. (JIA Rui. Study on relaxation effect of vertical soil pressure for shield tunnel[D]. Nanjing: Hohai University, 2007. (in Chinese))
    [8] 武 军, 廖少明, 张 迪. 基于颗粒流椭球体理论的隧道极限松动区与松动土压力[J]. 岩土工程学报, 2013, 35(4): 714-721. (WU Jun, LIAO Shao-ming, ZHANG Di. Loosening zone and earth pressure around tunnels in sandy soils based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 714-721. (in Chinese))
    [9] MARSTON A. The theory of external loads on closed conduits in the light of the latest experiments[R]. Iowa: Iowa Engineering Experiment Station, 1930.
    [10] JAKY J. Pressure in soils[C]// Proceedings Second International Conference on Soil Mechanics and Foundations Engineering. Rotterdam, 1936.
    [11] KRYNINE D P. Discussion of "stability and stiffness of cellular cofferdams," by Karl Terzaghi[J]. Transactions, ASCE, 1945, 110: 1175-1178.
    [12] HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-317.
    [13] 陈若曦, 朱 斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406. (CHEN Ruo-xi, ZHU Bin, CHEN Yun-min, et al. Modified Terzaghi loosening earth pressure based on theory of main stress axes rotation[J]. Rock and Soil Mechanics,2010, 31(5): 1402-1406. (in Chinese))
    [14] 黎春林. 盾构隧道施工松动土压力计算方法研究[J]. 岩土工程学报, 2014, 36(9): 1714-1720. (LI Chun-lin. Method for calculating loosening earth pressure during construction of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1714-1720. (in Chinese))
    [15] BRADY B H G, BROWN E T. Rock mechanics for underground mining[M]. 3rd ed. New York: Kluwer Academic Publishers, 2005: 454-463.
    [16] KVAPIL R. Sublevel caving. SME mining engineering handbook [M]. 2nd ed. New York: Soc Min Engrs, AIME, 1992:1789-1814.
    [17] BJERRUM L, P M Frimann Clausen, DUNCAN J M. Earth pressures on flexible structures—a state-of-the-art report[C]// Proceedings Fifth European Conference on Soil Mechanics and Foundation Engineering. Madrid, :169-196.
    [18] LEE Chung-Jung, CHIANG Kuo-Hui, KUO Chia-Ming. Ground movement and tunnel stability when tunneling in sand ground[J]. Journal of the Chinese Institute of Engineers, 2004, 27(7): 1021-1032.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-21
  • 发布日期:  2017-01-24

目录

    /

    返回文章
    返回