• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于颗粒离散单元法的获取任意相对密实度下级配颗粒堆积体的数值方法

黄青富, 詹美礼, 盛金昌, 罗玉龙, 张霞

黄青富, 詹美礼, 盛金昌, 罗玉龙, 张霞. 基于颗粒离散单元法的获取任意相对密实度下级配颗粒堆积体的数值方法[J]. 岩土工程学报, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
引用本文: 黄青富, 詹美礼, 盛金昌, 罗玉龙, 张霞. 基于颗粒离散单元法的获取任意相对密实度下级配颗粒堆积体的数值方法[J]. 岩土工程学报, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
Citation: HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019

基于颗粒离散单元法的获取任意相对密实度下级配颗粒堆积体的数值方法  English Version

基金项目: 国家自然科学基金项目(51079039,51009053)
详细信息
    作者简介:

    黄青富(1985- ),男,博士研究生,主要从事岩土体渗流分析与控制、土体细观数值模拟。E-mail: hqf23@163.com。

  • 中图分类号: TU43

Numerical method to generate granular assembly with any desired relative density based on DEM

  • 摘要: 土体的密实程度对土体的工程性质影响很大。获得给定相对密实度下的初始颗粒堆积体,是利用离散单元法进行土体细观力学分析的重要前提。基于离散单元法,首先获得颗粒在自重作用下稳定后的最松散堆积体。其次提出采用减小压实过程中颗粒间摩擦系数的拟振动压实法来模拟现实中的振动压实作用,并验证了其可行性。当压实过程中颗粒间摩擦系数为0时获得最密实堆积体。研究了拟振动压实过程中颗粒间摩擦系数与压实稳定后的堆积体孔隙率的关系。最后根据该关系可估算出获得任意给定相对密实度堆积体所需的压实过程中颗粒间的摩擦系数。研究结果表明:颗粒的配位数与粒径近似满足指数关系;通过减小压实过程中颗粒间的摩擦系数能较好的模拟振动压实效果;压实过程中颗粒间的摩擦系数与堆积体孔隙率满足负指数关系;该方法可获得任意相对密实度下的颗粒堆积体,可以为土体细观力学的数值模拟提供初始颗粒堆积结构。
    Abstract: The relative density of non-cohesive soil has a great impact on the engineering properties of soil. For most studies of mesoscopic simulation by using distinct element method (DEM), the first step of the analysis is to create an initial granular assembly with a desired relative density. Based on the DEM, the loosest state is obtained by depositing particles under gravity firstly. Secondly, a quasi vibration and compaction method (QVC) is proposed to simulate the vibration and compaction method by reducing the friction between the particles during the compaction. And the feasibility of QVC method is validated. The densest state is obtained by reducing the friction to zero. The relationship between the friction and packing porosity is studied. Based on this relationship, the friction which is used to obtain the assembly with desired relative density can be estimated. The results show that the relationship between the coordination number of particle and the particle diameter is compatible with an exponential distribution. By reducing the friction between the particles, the vibration process can be well reflected. The relationship between the friction and the packing porosity agrees with the negative exponential distribution. Based on the proposed method, an initial granular assembly with any desired relative density can be obtained, which can be used for mesoscopic simulation of grained materials.
  • [1] 周 健, 王子寒, 张 姣, 等. 不同应力路径下砾石土力学特性的宏细观研究[J]. 岩石力学与工程学报, 2013, 32(8): 1721-1728. (ZHOU Jian, WANG Zi-han, ZHANG Jiao, et al. Macro-meso research on mechanical behavior of a gravelly soil under various stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1721-1728. (in Chinese))
    [2] 蒋明镜, 李 涛, 胡海军. 结构性黄土双轴压缩试验的离散元数值仿真分析[J]. 岩土工程学报, 2013, 35(增刊2): 241-246. (JIANG Ming-jing, LI Tao, HU Hai-jun. Numerical simulation of biaxial tests on structured loess by distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 241-246. (in Chinese))
    [3] 张 超, 展旭财, 杨春和. 粗粒料强度及变形特性的细观模拟[J]. 岩土力学, 2013, 34(7): 2077-2083. (ZHANG Chao, ZHAN Xu-cai, YANG Chun-he. Mesocopic simulation of strength and deformation characteristics of coarse grained materials[J]. Rock and Soil Mechanics, 2013, 34(7): 2077-2083. (in Chinese))
    [4] DELUZARCHE R, CAMBOU B. Discrete numerical modelling of rockfill dams[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(11): 1075-1096.
    [5] ØREN P, BAKKE S. Process based reconstruction of sandstones and prediction of transport properties[J]. Transport in Porous Media, 2002, 46(2/3): 311-343.
    [6] 刘 军, 刘汉龙. 用Monte Carlo方法模拟砂土的自然堆积过程[J]. 岩土力学, 2005, 26(增刊1): 113-116. (LIU Jun, LIU Han-long. Simulation natural packing process of sand grains using Monte Carlo method[J]. Rock and Soil Mechanics, 2005, 26(S1): 113-116. (in Chinese))
    [7] 黄晚清, 陆 阳. 散粒体重力堆积的三维离散元模拟[J]. 岩土工程学报, 2006, 28(12): 2139-2143. (HUANG Wan-qing, LU Yang. 3D DEM simulation of random packing of particulates under gravity[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2139-2143. (in Chinese))
    [8] 楚锡华. 颗粒材料数值样本的坐标排序生成技术[J]. 岩土力学, 2011, 32(9): 2852-2855. (CHU Xi-hua. A generation method for numerical specimen of granular materials by sort of coordinates[J]. Rock and Soil Mechanics, 2011, 32(9): 2852-2855. (in Chinese))
    [9] .BAGI K. An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies[J]. Granular Matter, 2005, 7(1): 31-43.
    [10] Itasca Consulting Group I. User's manual: PFC 3D -particle flow code in 3 dimensions[M]. Minneapolis: Itasca Consulting Group, 2004.
    [11] 周 健, 周凯敏, 姚志雄, 等. 砂土管涌-滤层防治的离散元数值模拟[J]. 水利学报, 2010, 41(1): 17-24. (ZHOU Jian, ZHOU Kai-min, YAO Zhi-xiong, et al. Numerical simulation of piping-filter prevention in sandy soil by discrete element method[J]. Journal of Hydraulic Engineering, 2010, 41(1): 17-24. (in Chinese))
    [12] SALOT C, GOTTELAND P, VILLARD P. Influence of relative density on granular materials behavior: DEM simulations of triaxial tests[J]. Granular Matter, 2009, 11(4): 221-236.
    [13] INDRARATNA B, RAUT A K, KHABBAZ H. Constriction-based retention criterion for granular filter design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(3): 266-276.
    [14] 周 伟, 谢婷蜓, 马 刚, 等. 基于颗粒流程序的真三轴应力状态下堆石体的变形和强度特性研究[J]. 岩土力学, 2012, 33(10): 3008-3012. (ZHOU Wei, XIE Ting-ting, MA Gang, et al. Stress and deformation analysis of rockfill in true triaxial stress conditions based on PFC[J]. Rock and Soil Mechanics, 2012, 33(10): 3008-3012. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-13
  • 发布日期:  2015-03-23

目录

    /

    返回文章
    返回