• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土中大直径单桩风机动力响应模型试验

张陈蓉, 田抒平, 张纪蒙

张陈蓉, 田抒平, 张纪蒙. 砂土中大直径单桩风机动力响应模型试验[J]. 岩土工程学报, 2022, 44(S2): 16-19. DOI: 10.11779/CJGE2022S2004
引用本文: 张陈蓉, 田抒平, 张纪蒙. 砂土中大直径单桩风机动力响应模型试验[J]. 岩土工程学报, 2022, 44(S2): 16-19. DOI: 10.11779/CJGE2022S2004
ZHANG Chen-rong, TIAN Shu-ping, ZHANG Ji-meng. Model tests on large-diameter monopile-supported offshore wind turbine in sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 16-19. DOI: 10.11779/CJGE2022S2004
Citation: ZHANG Chen-rong, TIAN Shu-ping, ZHANG Ji-meng. Model tests on large-diameter monopile-supported offshore wind turbine in sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 16-19. DOI: 10.11779/CJGE2022S2004

砂土中大直径单桩风机动力响应模型试验  English Version

基金项目: 

国家自然科学基金项目 51779175

详细信息
    作者简介:

    张陈蓉(1982—),女,副研究员,主要从事桩基工程科研与教学工作。E-mail:zcrong33@tongji.edu.cn

  • 中图分类号: TU473.1

Model tests on large-diameter monopile-supported offshore wind turbine in sand

  • 摘要: 采用电机伺服随机动力加载设备开展了一系列1g模型试验,研究砂土中大直径单桩基础的风机模型在风暴条件下的动力响应特性。试验结果表明:叶片风机模型,其位移响应极值相比集中质量风机模型大约偏小4%~8%。相比顶部集中质量模型5 Hz左右的单共振峰值,叶片风机模型频响分布含4 Hz与6 Hz对应的2个固有频率共振峰值,分别为塔身固有频率与叶片塔筒耦合固有频率。风暴条件下随着平均风速的提高,风机位移响应极值呈现非线性增长的趋势。采用固定底端的风机模型相比单桩基础,其塔顶位移响应极值偏低约45%,固有频率偏高约11%;能量水平更高、高频分布更多的风谱,其对应风机动力响应极值更高,频域能量水平更高。
    Abstract: Using the motor servo random dynamic loading equipment, a series of 1g model tests are carried out to investigate the dynamic response characteristics of the monopile-supported wind turbine model in sand under storm conditions. The experimental results indicate that the extreme displacement response of the blade-coupled model is about 4%~8% smaller than the lumped model. The lumped model contains a single resonance peak corresponding to 5 Hz. However, the blade-coupled model contains two natural frequency resonance peaks 4Hz and 6Hz, which are corresponding to the natural frequencies of the tower and the blade-tower coupling respectively. With the increase of the average wind speed under storm conditions, the extreme displacement response shows a non-linear growth trend. For the bottom-fixed model, the extreme displacement response of the tower tip is about 45% lower, and the natural frequency is about 11% higher compared with the monopile foundation model. For the wind spectrum with higher energy level and more high-frequency distribution, the corresponding extreme dynamic response and the energy level in the frequency domain are higher.
  • 图  1   3种风速功率谱密度分布

    Figure  1.   Distribution of three kinds of power spectral densities of wind

    图  2   试验装置图

    Figure  2.   Test device

    图  3   位移响应极值与平均风速的关系

    Figure  3.   Relationship between extreme displacement response and average wind speed

    图  4   塔顶位移功率谱密度(70 m/s)

    Figure  4.   Power spectral densities of displacement at tower tip (70 m/s)

    图  5   塔顶振幅与加载频率的关系

    Figure  5.   Relationship between amplitude of tower tip and loading frequency

    图  6   位移响应极值与平均风速的关系

    Figure  6.   Relationship between extreme displacement response and average wind speed

    图  7   塔顶位移功率谱密度(70 m/s)

    Figure  7.   Power spectral densities of displacement at tower tip (70 m/s)

    图  8   塔顶振幅与加载频率的关系

    Figure  8.   Relationship between amplitude of tower tip and loading frequency

    图  9   位移响应极值与平均风速的关系

    Figure  9.   Relationship between extreme displacement response and average wind speed

    图  10   塔顶位移功率谱密度(70 m/s)

    Figure  10.   Power spectral densities of displacement at tower tip (70 m/s)

    表  1   试验安排

    Table  1   Experimental arrangement

    结构 风谱 正弦激振试验
    Kaimal谱 Yu谱 Li谱
    固定底端 集中质量 E1 E6
    叶片模型 E2 E7
    单桩基础 集中质量 E8
    叶片模型 E3 E4 E5
    下载: 导出CSV
  • [1]

    HU Y, YANG J, BANIOTOPOULOS C, et al. Dynamic analysis of offshore steel wind turbine towers subjected to wind, wave and current loading during construction[J]. Ocean Engineering, 2020, 216: 108084. doi: 10.1016/j.oceaneng.2020.108084

    [2]

    NAQVI S K. Scale model experiments on floating offshore wind turbines[D]. Worcester Polytechnic Institute, 2012.

    [3]

    ADHIKARI S, BHATTACHARYA S. Vibrations of wind turbines considering soil-structure interaction[J]. Wind and Structures, 2011, 14(2): 85–112. doi: 10.12989/was.2011.14.2.085

    [4]

    LOMBARDI D, BHATTACHARYA S, WOOD D M. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165–180. doi: 10.1016/j.soildyn.2013.01.015

    [5]

    KAIMAL J C, WYNGAARD J C, IZUMI Y, et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563–589. doi: 10.1002/qj.49709841707

    [6]

    YU B, GAN CHOWDHURY A G, MASTERS F J. Hurricane wind power spectra, cospectra, and integral length scales[J]. Boundary-Layer Meteorology, 2008, 129(3): 411–430. doi: 10.1007/s10546-008-9316-8

    [7]

    LI L, XIAO Y, KAREEM A, et al. Modeling typhoon wind power spectra near sea surface based on measurements in the South China sea[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104/105/106: 565–576.

    [8] 王文华, 李昕, 孔宪京. 地震作用下固定式海上风机动力模型试验及耦合数值研究[J]. 大连理工大学学报, 2020, 60(5): 513–529. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG202005010.htm
    [9]

    SIMPSON R H, SAFFIR H. The hurricane disaster-potential scale[J]. Weatherwise, 1974, 27(4): 169–186. doi: 10.1080/00431672.1974.9931702

    [10]

    VELETSOS A S, VERBIČ B. Vibration of viscoelastic foundations[J]. Earthquake Engineering & Structural Dynamics, 1973, 2(1): 87–102.

  • 期刊类型引用(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 . 百度学术
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 . 百度学术
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 . 百度学术
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 . 百度学术
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 . 百度学术
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 . 百度学术
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 . 百度学术
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 . 百度学术
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    其他类型引用(14)

图(10)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 23
出版历程
  • 收稿日期:  2022-12-05
  • 网络出版日期:  2023-03-26
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回