• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chen-rong, TIAN Shu-ping, ZHANG Ji-meng. Model tests on large-diameter monopile-supported offshore wind turbine in sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 16-19. DOI: 10.11779/CJGE2022S2004
Citation: ZHANG Chen-rong, TIAN Shu-ping, ZHANG Ji-meng. Model tests on large-diameter monopile-supported offshore wind turbine in sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 16-19. DOI: 10.11779/CJGE2022S2004

Model tests on large-diameter monopile-supported offshore wind turbine in sand

More Information
  • Received Date: December 05, 2022
  • Available Online: March 26, 2023
  • Using the motor servo random dynamic loading equipment, a series of 1g model tests are carried out to investigate the dynamic response characteristics of the monopile-supported wind turbine model in sand under storm conditions. The experimental results indicate that the extreme displacement response of the blade-coupled model is about 4%~8% smaller than the lumped model. The lumped model contains a single resonance peak corresponding to 5 Hz. However, the blade-coupled model contains two natural frequency resonance peaks 4Hz and 6Hz, which are corresponding to the natural frequencies of the tower and the blade-tower coupling respectively. With the increase of the average wind speed under storm conditions, the extreme displacement response shows a non-linear growth trend. For the bottom-fixed model, the extreme displacement response of the tower tip is about 45% lower, and the natural frequency is about 11% higher compared with the monopile foundation model. For the wind spectrum with higher energy level and more high-frequency distribution, the corresponding extreme dynamic response and the energy level in the frequency domain are higher.
  • [1]
    HU Y, YANG J, BANIOTOPOULOS C, et al. Dynamic analysis of offshore steel wind turbine towers subjected to wind, wave and current loading during construction[J]. Ocean Engineering, 2020, 216: 108084. doi: 10.1016/j.oceaneng.2020.108084
    [2]
    NAQVI S K. Scale model experiments on floating offshore wind turbines[D]. Worcester Polytechnic Institute, 2012.
    [3]
    ADHIKARI S, BHATTACHARYA S. Vibrations of wind turbines considering soil-structure interaction[J]. Wind and Structures, 2011, 14(2): 85–112. doi: 10.12989/was.2011.14.2.085
    [4]
    LOMBARDI D, BHATTACHARYA S, WOOD D M. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165–180. doi: 10.1016/j.soildyn.2013.01.015
    [5]
    KAIMAL J C, WYNGAARD J C, IZUMI Y, et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563–589. doi: 10.1002/qj.49709841707
    [6]
    YU B, GAN CHOWDHURY A G, MASTERS F J. Hurricane wind power spectra, cospectra, and integral length scales[J]. Boundary-Layer Meteorology, 2008, 129(3): 411–430. doi: 10.1007/s10546-008-9316-8
    [7]
    LI L, XIAO Y, KAREEM A, et al. Modeling typhoon wind power spectra near sea surface based on measurements in the South China sea[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104/105/106: 565–576.
    [8]
    王文华, 李昕, 孔宪京. 地震作用下固定式海上风机动力模型试验及耦合数值研究[J]. 大连理工大学学报, 2020, 60(5): 513–529. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG202005010.htm
    [9]
    SIMPSON R H, SAFFIR H. The hurricane disaster-potential scale[J]. Weatherwise, 1974, 27(4): 169–186. doi: 10.1080/00431672.1974.9931702
    [10]
    VELETSOS A S, VERBIČ B. Vibration of viscoelastic foundations[J]. Earthquake Engineering & Structural Dynamics, 1973, 2(1): 87–102.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return