• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含不透水软弱层的可液化场地浅埋输水管动力响应分析

胡正阳, 张鑫磊, 高洪梅, 王志华, 孙玥, 高梦婷

胡正阳, 张鑫磊, 高洪梅, 王志华, 孙玥, 高梦婷. 含不透水软弱层的可液化场地浅埋输水管动力响应分析[J]. 岩土工程学报, 2023, 45(S2): 61-66. DOI: 10.11779/CJGE2023S20002
引用本文: 胡正阳, 张鑫磊, 高洪梅, 王志华, 孙玥, 高梦婷. 含不透水软弱层的可液化场地浅埋输水管动力响应分析[J]. 岩土工程学报, 2023, 45(S2): 61-66. DOI: 10.11779/CJGE2023S20002
HU Zhengyang, ZHANG Xinlei, GAO Hongmei, WANG Zhihua, SUN Yue, GAO Mengting. Dynamic response analysis of shallowly buried water pipelines in liquefiable sites with impervious weak layers[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 61-66. DOI: 10.11779/CJGE2023S20002
Citation: HU Zhengyang, ZHANG Xinlei, GAO Hongmei, WANG Zhihua, SUN Yue, GAO Mengting. Dynamic response analysis of shallowly buried water pipelines in liquefiable sites with impervious weak layers[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 61-66. DOI: 10.11779/CJGE2023S20002

含不透水软弱层的可液化场地浅埋输水管动力响应分析  English Version

基金项目: 

国家自然科学基金青年基金项目 52108324

国家自然科学基金面上项目 52178336

江苏高校“青蓝工程”中青年学术带头人项目 

详细信息
    作者简介:

    胡正阳(2002—),男,硕士研究生,主要从事土动力学及地震工程方面的研究。E-mail: zhengyang-hu@outlook.com

    通讯作者:

    张鑫磊, E-mail: zxl201409@163.com

  • 中图分类号: TU441

Dynamic response analysis of shallowly buried water pipelines in liquefiable sites with impervious weak layers

  • 摘要: 由于特殊层理结构、不透水层的水力阻隔及其下形成的“水夹层”等因素的共同作用,可液化夹层土场地浅埋输水管道动力响应较复杂。通过一系列含不透水软弱层的可液化场地浅埋输水管道振动台试验,对比分析土体的加速度发展规律、管道竖向位移、管-土界面超孔压响应及管壁动土压力等,探讨管道上浮的机理及及含不透水层场地管道抗浮性能增强机制。试验结果表明,管道上、下动土压力差是导致管道发生上浮的主要原因,且管道上浮速率与其受到的动土压力差呈正相关性;软弱不透水层隔绝了场地上、下砂层的水力梯度,减小了管道上、下侧的动土压力差,从而降低管道位移,提高管道的抗震稳定性;不透水层厚度会显著影响管道的变形模式,无不透水层场地中管道应变较大且呈现出明显的非对称特性,而不透水层厚度较大工况的管道变形较为规则。
    Abstract: Due to the combined effects of special bedding structures, hydraulic barriers in impermeable layers and the formation of "water interlayers", the dynamic responses of shallowly buried water pipelines in liquefiable interlayer soil sites are complex. A series of shaking table tests on the shallowly buried water pipelines in liquefiable sites with impermeable weak layers are conducted to compare and analyze various aspects, including soil acceleration responses, development patterns of dynamic pore pressure, vertical displacements of pipelines, excess pore pressure responses at the pipe-soil interface and dynamic earth pressures on pipeline walls. The uplift mechanisms of underlying pipelines and the enhancement of anti-uplift performance in sites with impermeable layers are investigated. The results show that the differential dynamic earth pressures between the above and below pipelines are primarily responsible for pipeline uplift. Furthermore, there exists a positive correlation between the uplift rate and the differential dynamic earth pressures. The presence of impermeable layers isolates hydraulic gradients between the upper and lower sand layers within the site, reducing the differential dynamic earth pressures at both sides of the pipelines, decreasing their displacement and improving the seismic stability. Moreover, the absence or thickness of impermeable layers significantly influences the deformation patterns. The absence of an impermeable layer results in larger strains on the pipelines, accompanied by noticeable asymmetric characteristics. As the thicknesses of the impermeable layers increase, the deformations of the pipelines become more regularized.
  • 图  1   砂土颗粒粒径

    Figure  1.   Grain-size distribution curves of sand

    图  2   不同测点处的贯入阻力

    Figure  2.   Penetration resistances at different measuring points

    图  3   振动台台面加速度曲线

    Figure  3.   Acceleration curves of shaking table output

    图  4   模型试验的传感器布置

    Figure  4.   Sensors for model tests

    图  5   夹层厚度对管道隆起位移的影响

    Figure  5.   Effects of interlayer thickness on uplift

    图  6   孔压比时程曲线

    Figure  6.   Time-history curves of pore pressure ratio

    图  7   管道上下两侧动土压力差和管道上浮速度

    Figure  7.   Dynamic earth pressure differences and uplift velocities of pipelines

    图  8   动土压力差对管道上浮的影响

    Figure  8.   Effects of differential dynamic earth pressures on uplift velocity of pipelines

    图  9   埋地管道的应变

    Figure  9.   Strain responses of pipelines during shaking

    表  1   模型试验相似关系

    Table  1   Similarity relationship of model tests

    物理量 相似关系 相似比
    长度Sl Sl 1/20
    密度Sρ Sρ 2/1
    重量加速度Sg Sg 1
    弹性模量SE SlSρ 1/10
    应力Sσ SESε 1/10
    应变Sε 1 1
    频率Sf Sa/Sl 4
    加速度Sa Sg 1
    下载: 导出CSV

    表  2   砂土基本物理性质指标

    Table  2   Physical properties of sand

    不均匀系数Cu 曲率系数Cc 相对质量密度Gs 最大孔隙比emax 最小孔隙比emin
    3.37 0.89 2.72 0.62 0.27
    下载: 导出CSV

    表  3   黏土基本物理性质指标

    Table  3   Physical properties of clay

    含水率w/% 天然重度γ/(kN·m-3) 相对质量密度Gs 液限wL/% 塑限wP/% 塑性指数IP
    46.8 17.8 2.71 41.03 24.76 17.27
    下载: 导出CSV

    表  4   振动台试验工况

    Table  4   Summary of shaking table tests

    工况 不透水层厚度/mm 加载幅值/g
    1 0 0.16
    2 20 0.16
    3 50 0.16
    下载: 导出CSV
  • [1] 李典庆, 单晟治, 吴强, 等. 地震动持时对可液化场地管道上浮反应影响分析[J]. 地震工程与工程振动, 2022, 42(4): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202204006.htm

    LI Dianqing, SHAN Shengzhi, WU Qiang, et al. Influence of ground motion duration on the seismic uplift response of buried pipe in liquefiable site[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(4): 43-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202204006.htm

    [2]

    KO Y, TSAI T, JHENG K. Full‐scale shaking table tests on soil liquefaction‐induced uplift of buried pipelines for buildings[J]. Wiley, 2023, 52(5): 1486-1510.

    [3]

    NOKANDE S, JAFARIAN Y, HADDAD A. Shaking table tests on the liquefaction-induced uplift displacement of circular tunnel structure[J]. Underground Space, 2023, 10: 182-198. doi: 10.1016/j.undsp.2022.09.004

    [4]

    NOKANDE S, HADDAD A, JAFARIAN Y. Shaking table test on mitigation of liquefaction-induced tunnel uplift by helical pile[J]. International Journal of Geomechanics, 2023, 23(1).

    [5]

    CHAKRABORTY D. Probabilistic uplift resistance of pipe buried in spatially random cohesionless soil[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2023, 93(2): 355-368. doi: 10.1007/s40010-022-00808-6

    [6]

    YOUSSEF H, JEFFREY H, BIRGER S, et al. Seismic design and analysis of underground structures[J]. Tunneling and Underground Space Technology, 2001, 16(4): 247-293. doi: 10.1016/S0886-7798(01)00051-7

    [7]

    OLIVETO G, CALIÒ I, GRECO A. Large displacement behavior of a structural model with foundation uplift under impulsive and earthquake excitations[J]. Wiley, 2003, 32(3): 369-393.

    [8]

    HU J, CHEN Q, LIU H. Relationship between earthquake-induced uplift of rectangular underground structures and the excess pore water pressure ratio in saturated sandy soils[J]. Tunneling and Underground Space Technology, 2018, 79: 35-51. doi: 10.1016/j.tust.2018.04.039

    [9]

    CILINGIR U, MADABHUSHI S P. Effect of depth on seismic response of circular tunnels[J]. Canadian Geotechnical Journal, 2011, 48(1): 117-127. doi: 10.1139/T10-047

    [10]

    CILINGIR U, MADABHUSHI S G. Effect of depth on the seismic response of square tunnels[J]. Soils and Foundations, 2011, 51(3): 449-457. doi: 10.3208/sandf.51.449

    [11]

    KOKUSHO T. Water film in liquefied sand and its effect on lateral spread[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(10): 817-826. doi: 10.1061/(ASCE)1090-0241(1999)125:10(817)

  • 期刊类型引用(4)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 . 百度学术
    3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 . 百度学术
    4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 . 百度学术

    其他类型引用(15)

图(9)  /  表(4)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  23
  • PDF下载量:  19
  • 被引次数: 19
出版历程
  • 收稿日期:  2023-11-29
  • 网络出版日期:  2024-04-19
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回