Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

玄武岩纤维对黏土干缩开裂特征的影响

王峰, 原俊红, 吴图那胜

王峰, 原俊红, 吴图那胜. 玄武岩纤维对黏土干缩开裂特征的影响[J]. 岩土工程学报, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003
引用本文: 王峰, 原俊红, 吴图那胜. 玄武岩纤维对黏土干缩开裂特征的影响[J]. 岩土工程学报, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003
WANG Feng, YUAN Junhong, WU Tunasheng. Influences of basalt fibers on characteristics of shrinkage cracking of clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003
Citation: WANG Feng, YUAN Junhong, WU Tunasheng. Influences of basalt fibers on characteristics of shrinkage cracking of clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003

玄武岩纤维对黏土干缩开裂特征的影响  English Version

基金项目: 

内蒙古自然科学基金项目 2021MS04023

详细信息
    作者简介:

    作者简介:王 峰(1997—),男,硕士研究生,主要从事岩土工程有关的研究。E-mail: 2746580884@qq.com

    通讯作者:

    原俊红, E-mail: yjh@imu.edu.cn

  • 中图分类号: TU442

Influences of basalt fibers on characteristics of shrinkage cracking of clay

  • 摘要: 黏土的膨胀收缩会导致裂缝的产生,裂缝的产生会显著改变其水理-力学性能,常引起各类工程地质问题。为了研究玄武岩纤维对黏土抗裂性的改善作用,进行了室内试验,对取自呼和浩特市郊区某建筑工地黏土,共设计5组试样以定量分析纤维掺量对黏土开裂的影响,并采用数字图像处理技术进行了分析,并结果表明:土体试样的开裂可分为三个阶段,分别为裂隙产生阶段、裂隙网格形成阶段、裂隙宽度扩展阶段;在掺入纤维的土体试样中,其裂隙之间的正交性会发生改变,并会产生更多的死端裂隙;玄武岩纤维抑制了土体的开裂,降低了裂隙宽度、裂隙比,随着纤维含量的增加,土体试样首次开裂所对应的含水率减小。
    Abstract: The expansion and contraction of clay can lead to the formation of cracks, which can significantly alter its hydraulic and mechanical properties and often cause various engineering geological problems. In this study, the indoor experiments are conducted to investigate the improvement effects of basalt fibers on the cracking resistance of clay. A total of 5 sets of samples are designed to quantitatively analyze the effects of fiber content on clay cracking. The soil is taken from a construction site in the suburbs of Hohhot and analyzed using the digital image processing technology. The final results show that the cracking of the soil samples can be divided into three stages: crack generation stage, crack grid formation stage, and crack width expansion stage. In the soil samples mixed with fibers, the orthogonality between the cracks will change, and more dead end cracks will be generated. Through the researches, it is found that the basalt fibers inhibit the cracking of soil, reducing the width and ratio of cracks. With the increase of the fiber content, the moisture content corresponding to the first cracking of the soil samples decreases.
  • 图  1   图像处理过程

    Figure  1.   Image processing process

    图  2   含水率随时间变化图

    Figure  2.   Variation of moisture content over time

    图  3   裂隙发育过程

    Figure  3.   Crack development process

    图  4   平均裂缝宽度随时间变化图

    Figure  4.   Variation of average crack width over time

    图  5   裂隙比-含水率变化图

    Figure  5.   Variation of crack ratio-moisture content

    图  6   纤维桥接作用(放大图)

    Figure  6.   Bridging effects of fibers (enlarged image)

    图  7   龟裂演化机制

    Figure  7.   Evolution mechanism of cracking

    表  1   土的基本物理参数

    Table  1   Basic physical parameters of soil

    土体类型 Gs 塑限wP/% 液限wL/% 塑性指数IP 颗粒成分/%
    砂粒 粉粒 黏粒
    黏土 2.71 25.3 53.7 28.4 48.19 26.35 25.46
    下载: 导出CSV
  • [1]

    JAVADI S, GHAVAMI M, ZHAO Q, et al. Advection and retardation of non-polar contaminants in compacted clay barrier material with organoclay amendment[J]. Applied Clay Science, 2017, 142: 30-39. doi: 10.1016/j.clay.2016.10.041

    [2]

    DEMDOUM A, GUEDDOUDA M K, GOUAL I, et al. Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture[J]. Construction and Building Materials, 2020, 234: 117356. doi: 10.1016/j.conbuildmat.2019.117356

    [3]

    SAFARI E, JALILI GHAZIZADE M, ABDULI M A, et al. Variation of crack intensity factor in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without geotextile cover[J]. Waste Management, 2014, 34(8): 1408-1415. doi: 10.1016/j.wasman.2014.03.029

    [4]

    LI J, TANG C S, WANG D Y, et al. Effect of discrete fibre reinforcement on soil tensile strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 133-137. doi: 10.1016/j.jrmge.2014.01.003

    [5]

    HEJAZI S M, SHEIKHZADEH M, ABTAHI S M, et al. A simple review of soil reinforcement by using natural and synthetic fibers[J]. Construction and Building Materials, 2012, 30: 100-116. doi: 10.1016/j.conbuildmat.2011.11.045

    [6]

    NARANI S S, ABBASPOUR M, MIR MOHAMMAD HOSSEINI S M, et al. Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: with a special focus on landfill liners/covers[J]. Journal of Cleaner Production, 2020, 247: 119151. doi: 10.1016/j.jclepro.2019.119151

    [7]

    TANG C S, SHI B, GAO W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(3): 194-202. doi: 10.1016/j.geotexmem.2006.11.002

    [8]

    SHAH V, WANARE R, R IYER K K, et al. Evaluation of the role of fibres and admixture(s) on sustainable crack reduction in expansive soil[J]. Materials Today: Proceedings, 2023.

    [9]

    OWINO A O, HOSSAIN Z. The influence of basalt fiber filament length on shear strength development of chemically stabilized soils for ground improvement[J]. Construction and Building Materials, 2023, 374: 130930. doi: 10.1016/j.conbuildmat.2023.130930

    [10]

    NDEPETE C P, SERT S, BEYCIOĞLU A, et al. Exploring the effect of basalt fibers on maximum deviator stress and failure deformation of silty soils using ANN, SVM and FL supported by experimental data[J]. Advances in Engineering Software, 2022, 172: 103211. doi: 10.1016/j.advengsoft.2022.103211

    [11]

    PARASTAR F, HEJAZI S M, SHEIKHZADEH M, et al. A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills[J]. Journal of Environmental Management, 2017, 202: 29-37. http://www.xueshufan.com/publication/2735042728

    [12]

    PAUL S, SARKAR D. Performance evaluation of natural fiber reinforced Laterite soil for road pavement construction[J]. Materials Today: Proceedings, 2022, 62: 1246-1251. doi: 10.1016/j.matpr.2022.04.534

    [13]

    BU F, LIU J, MEI H, et al. Cracking behavior of sisal fiber-reinforced clayey soil under wetting-drying cycles[J]. Soil and Tillage Research, 2023, 227: 105596. doi: 10.1016/j.still.2022.105596

    [14] 丁选明, 方华强, 刘汉龙, 等. 纤维改性珊瑚泥裂隙动态演化规律试验研究[J]. 岩土工程学报, 2023, 45(9): 1801-1812. doi: 10.11779/CJGE20220653

    DING Xuanming, FANG Huaqiang, LIU Hanlong, et al. Dynamic evolution laws of desiccation cracking of fiber-improved coral silt[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1801-1812. (in Chinese) doi: 10.11779/CJGE20220653

  • 期刊类型引用(37)

    1. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 . 百度学术
    2. 程瑞林,汪泾周,范钦煜,湛正刚,周伟,马刚. 高心墙堆石坝材料本构模型计算的适用性研究. 中南大学学报(自然科学版). 2024(01): 219-229 . 百度学术
    3. 张丹,邱子源,金伟,张梓航,罗玉龙. 粗粒土渗透及渗透变形试验缩尺方法研究. 岩土力学. 2024(01): 164-172 . 百度学术
    4. 崔熙灿,张凌凯,王建祥. 缩尺效应对砂砾石料力学特性及其本构模型的影响. 浙江大学学报(工学版). 2024(06): 1198-1208 . 百度学术
    5. 邹德高,宁凡伟,刘京茂,崔更尧,孔宪京. 基于超大型三轴仪的堆石料动力特性缩尺效应研究. 水利学报. 2024(05): 528-536 . 百度学术
    6. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
    7. 刘赛朝,瞿常杰,石北啸. 堆石料缩尺效应试验及其数值模拟. 江西水利科技. 2024(05): 332-336 . 百度学术
    8. 邹德高,刘京茂,宁凡伟,孔宪京,崔更尧,金伟,湛正刚. 基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正. 岩土工程学报. 2024(12): 2476-2483 . 本站查看
    9. 陈洪春,王珊,段玉昌,王柳江,梁睿斌,徐祥,沈超敏. 基于现场载荷试验的压实土石填筑料变形参数反演. 三峡大学学报(自然科学版). 2023(01): 22-27 . 百度学术
    10. 蒋明杰,朱俊高,张小勇,梅国雄,赵辰洋. 缩尺效应对粗颗粒土静止侧压力系数影响规律试验. 工程科学与技术. 2023(02): 259-266 . 百度学术
    11. 蒋明杰,吉恩跃,王天成,栗书亚,朱俊高,梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究. 岩土工程学报. 2023(04): 855-861 . 本站查看
    12. 孙向军,潘家军,卢一为,左永振,周跃峰,王俊鹏. 级配和密度组合对粗粒土强度特性的影响. 长江科学院院报. 2023(08): 133-138 . 百度学术
    13. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 . 百度学术
    14. 潘家军,孙向军. 粗颗粒土缩尺方法及缩尺效应研究进展. 长江科学院院报. 2023(11): 1-8 . 百度学术
    15. 吴鑫磊,石北啸,刘赛朝,徐卫卫,常伟坤. 考虑颗粒破碎的堆石料大型三轴试验. 科学技术与工程. 2022(02): 749-756 . 百度学术
    16. 徐琨,杨启贵,周伟,马刚,黄泉水. 基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究. 中国农村水利水电. 2022(03): 200-206+211 . 百度学术
    17. 吴平,万燎榕,夏万求,高从容. 考虑级配影响的粗粒料三轴剪切破碎特性分析. 水电能源科学. 2022(05): 156-159+155 . 百度学术
    18. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 . 百度学术
    19. 邹德高,刘京茂,孔宪京,陈楷,屈永倩,宁凡伟,龚瑾. 强震作用下特高土石坝多耦合体系损伤演化机理及安全评价准则. 岩土工程学报. 2022(07): 1329-1340 . 本站查看
    20. 徐靖,叶华洋,朱晟. 粗粒料颗粒破碎三维离散元模型及其在密度桶试验中的应用. 河海大学学报(自然科学版). 2022(04): 127-134 . 百度学术
    21. 汤洪洁,杨正权,赵宇飞,田忠勇. 阿尔塔什高面板坝变形控制与安全保障关键技术研究. 水利规划与设计. 2022(12): 26-32 . 百度学术
    22. 宁凡伟,孔宪京,邹德高,刘京茂,余翔,周晨光. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响. 岩土工程学报. 2021(02): 263-270 . 本站查看
    23. 刘赛朝,吴鑫磊,徐卫卫,石北啸. 堆石料缩尺效应试验研究. 人民长江. 2021(01): 173-176+217 . 百度学术
    24. 姜景山,左永振,程展林,韦有信,张超,夏威夷. 考虑密度影响的粗粒料剪胀模型. 人民长江. 2021(04): 182-186 . 百度学术
    25. 潘生贵,陈少峰,杨辉,郑有强,李传懿. 海岸带强风化花岗岩强度及应力应变特性的尺寸效应研究. 工程勘察. 2021(05): 6-10 . 百度学术
    26. 毛航宇,刘斯宏,沈超敏,王柳江,初文婷. 温、湿控制粗粒料大型三轴仪的研制及应用. 岩石力学与工程学报. 2021(06): 1258-1266 . 百度学术
    27. 周泳峰,王俊杰,王爱国,杨希. 缩尺效应对堆石料颗粒破碎特性的影响. 水电能源科学. 2021(08): 165-168+65 . 百度学术
    28. 王家全,畅振超,王晴,唐毅. 不同动应力比下加筋前后砾性土的动三轴试验分析. 水力发电. 2020(04): 120-125 . 百度学术
    29. 李传懿,陈志波. 海底强风化花岗岩K_0固结三轴试验尺寸效应. 中南大学学报(自然科学版). 2020(06): 1646-1653 . 百度学术
    30. 邵晓泉,迟世春. 堆石料变形参数的粒径尺寸相关性研究. 岩土工程学报. 2020(09): 1715-1722 . 本站查看
    31. 李学丰,李瑞杰,张军辉,王奇. 堆石料三维强度特性. 中国公路学报. 2020(09): 54-62 . 百度学术
    32. 吴鑫磊,徐卫卫,刘赛朝,常伟坤,石北啸. 粗粒料缩尺效应的试验研究进展. 水利科学与寒区工程. 2020(03): 1-7 . 百度学术
    33. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    34. 陈之祥,邵龙潭,李顺群,郭晓霞,田筱剑. 三维真土压力盒的设计与应力参数的计算. 岩土工程学报. 2020(11): 2138-2145 . 本站查看
    35. 郭万里,朱俊高,王俊杰,鲁洋. 粗粒土静力特性及室内测试技术研究进展. 岩石力学与工程学报. 2020(S2): 3570-3585 . 百度学术
    36. 武利强,叶飞,林万青. 堆石料力学特性缩尺效应试验研究. 岩土工程学报. 2020(S2): 141-145 . 本站查看
    37. 任秋兵,李明超,杜胜利,刘承照. 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究. 水利学报. 2019(10): 1200-1213 . 百度学术

    其他类型引用(25)

图(7)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 62
出版历程
  • 收稿日期:  2023-07-04
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回