Stability of DPT hammer efficiency and relationships of blow-counts obtained by different DPT apparatuses
-
摘要: 采用现场能量标定和试验的方法研究不同类型DPT锤击数之间的相关性,探讨DPT试验锤击能量的稳定性。分析结果显示:DPT试验是一种锤击能量稳定且锤击效率较好的现场测试方法,不同类型的DPT锤击能量传递率(ETR)均值均能超过80%,且落锤越重,探杆直径尺寸越大,能量传递率越高。通过能量传递率标定锤击数和现场试验的方法,分别获取了不同类型DPT锤击数之间的转化关系,且二者得到的不同类型DPT锤击数之间的转化系数较一致,重型DPT试验得到的锤击数约为超重型DPT试验锤击数2.5倍。能量测试仪获取的ETR实为锤击有效能量的传入率,经过探杆的能量损耗才是贯入的实际有效能量,而探头贯入能量测试是一项尚需解决的技术。Abstract: The blow counts of different DPT apparatuses and their relationships are analyzed by means of the energy-calibration method which uses a pile dynamic analyzer (PDA) energy measurement and the in-situ DPT tests. The stability of energy transmitted into penetration tips is discussed. The analytical results demonstrate that the DPT is a reliable site testing technique with good hammering efficiency. The energy transfer ratios (ETR) of different types of DPT are high with the average values more than 80%. The relationships of blow counts calibrated by ETR values are consistent well with those obtained by the in-situ tests. The blow counts of heavy DPT tests with a hammer of 63.5 kg is in average 2.5 times those obtained by super-heavy DPT with a hammer of 120 kg, and the influence of rod diameters can be neglected. The ETR values measure the energy transmitted into the rod through hammer drops, i.e., hammering efficiency. However, the actual energy transmitted into soil usually reduces due to the energy consuming of rods and should be measured at the tip. The technique is expected to be solved in the future.
-
Keywords:
- dynamic penetration test /
- energy measurement /
- blow count /
- converting coefficient
-
感谢东华理工大学侯龙清教授、桂林理工大学曹振中教授以及四川德阳金阳岩土工程有限公司对现场勘查工作提供的支持和帮助。
-
表 1 采用120 kg穿心锤、60 mm探杆DPT试验实测能量传递率统计值
Table 1 ETR statistics of DPT tests with a hammer of 120 kg and rods of 60 mm in diameter
(%) 试验点 能量传递率(ETR) 均值 均值+标准差 均值-标准差 标准差 安平村 92.53 97.20 87.86 4.67 白虎头 87.65 92.82 82.48 5.17 天齐村 91.78 94.86 88.70 3.08 白江村 88.90 92.69 85.11 3.79 武都村 92.91 96.97 88.85 4.06 表 2 采用63.5 kg穿心锤、60 mm探杆DPT试验实测能量传递率统计值
Table 2 ETR statistics of DPT tests with a hammer of 63.5 kg and rods of 60 mm in diameter
(%) 试验点 能量传递率(ETR) 均值 均值+标准差 均值-标准差 标准差 安平村 88.88 96.16 81.60 7.28 白虎头 84.43 90.27 78.59 5.84 天齐村 94.51 100.80 88.22 6.29 白江村 89.32 93.64 85.00 4.32 表 3 采用63.5 kg穿心锤、42 mm探杆DPT试验实测能量传递率统计值
Table 3 ETR statistics of DPT tests with a hammer of 63.5 kg and rods of 42 mm in diameter
(%) 试验点 能量传递率(ETR) 均值 均值+标准差 均值-标准差 标准差 安平村 76.96 81.45 72.47 4.49 白虎头 79.94 84.28 75.60 4.34 天齐村 92.94 99.30 86.58 6.36 武都村 82.52 86.76 78.28 4.24 表 4 基于ETR标定的不同类型DPT试验锤击数比值
Table 4 ETR-calibrated blow-count ratios of different DPT tests with respect to (N120)60
试验点 DPT锤击数转化系数 (N63.5)60/(N120)60 (N63.5)42/(N120)60 (N63.5)42/(N63.5)60 安平村 2.63 3.03 1.15 白虎头 2.56 2.78 1.05 天齐村 2.44 2.44 1.02 白江村 2.50 — — 武都村 — 2.70 — 平均值 2.53 2.74 1.07 表 5 现场实测不同类型DPT锤击数比值
Table 5 Blow-count ratios of different DPT with respect to (N120)60
试验点 试验锤击数的比值 (N63.5)60/(N120)60 (N63.5)42/(N120)60 (N63.5)42/(N63.5)60 安平村 2.33 3.29 1.44 白虎头 2.60 2.18 0.99 天齐村 2.91 2.67 0.98 白江村 2.03 — — 武都村 — 1.80 — 平均值 2.47 2.49 1.14 -
[1] 张平, 田红花. 有关动力触探影响因素修正问题的探讨[J]. 沈阳大学学报, 1999(2): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDA199902017.htm ZHANG Ping, TIAN Hong-hua. The study on amendment of dynamic sounding impact factors[J]. Journal of Shenyang University, 1999(2): 80-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDA199902017.htm
[2] 工程地质手册编委会. 工程地质手册[M]. 4版.北京: 中国建筑工业出版社, 2012. Editing Committee of Handbook of Engineering Geology. Handbook of Engineering Geology[M]. 4 ed. Beijing: China Architecture Press, 2012. (in Chinese)
[3] 邢皓枫, 徐超, 石振明, 等. 岩土工程原位测试[M]. 上海: 同济大学出版社, 2015. XING Hao-feng, XU Chao, SHI Zhen-ming, et al. Geotechnical Engineering In-situ Test[M]. Shanghai: Tongji University Press, 2015. (in Chinese)
[4] 成都地区建筑地基基础设计规范:DB51/T5026—2001[S]. 2001. Design Code for Building Foundations of Chengdu Region: DB51/T5026—2001[S]. 2001. (in Chinese)
[5] 牛建光, 孙成科, 蒯志要, 等. 动力触探试验和标准贯入试验指标相关性研究[J]. 港工技术, 2013, 50(5): 52-54. doi: 10.3969/j.issn.1004-9592.2013.05.017 NIU Jian-guang, SUN Cheng-ke, KUAI Zhi-yao, et al. Correlation study of dynamic penetration test index and standard penetration test index[J]. Port Engineering Technology, 2013, 50(5): 52-54. (in Chinese) doi: 10.3969/j.issn.1004-9592.2013.05.017
[6] 郑伟, 肖雄丙, 张宏明. 动探与标贯试验在地基液化检测中的相关性研究[J]. 港工技术, 2015, 52(6): 105-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG201506027.htm ZHENG Wei, XIAO Xiong-bing, ZHANG Hong-ming. Correlation study of dynamic sounding and standard penetration test applied in foundation liquefaction detection[J]. Port Engineering Technology, 2015, 52(6): 105-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG201506027.htm
[7] 刘旭, 张海东, 葛宝玉, 等. 粉细砂层标贯指标与重型动力触探指标换算的探讨[J]. 土工基础, 2014, 27(6): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201406034.htm LIU Xu, ZHANG Hai-dong, GE Bao-yu, et al. Correlations between SPT and heavy dynamic penetration testing in silty fine sands[J]. Soil Engineering and Foundation, 2014, 27(6): 126-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201406034.htm
[8] 铁路工程地质原位测试规程:TB 10018—2018[S]. 2018. Code for In-Situ Testing of Railway Engineering Geology: TB 10018—2018[S]. 2018. (in Chinese)
[9] 成晓伟. 圆锥动力触探试验在德阳砂砾石层中的应用[J]. 土工基础, 2012, 26(2): 99-100, 104. CHENG Xiao-wei. Application of dynamic core penetrometer tests in gravelly soils in Deyang area[J]. Soil Engineering and Foundation, 2012, 26(2): 99-100, 104. (in Chinese)
[10] 左永振, 程展林, 丁红顺, 等. 动力触探杆长修正系数试验研究[J]. 岩土力学, 2014, 35(5): 1284-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405010.htm ZUO Yong-zhen, CHENG Zhan-lin, DING Hong-shun, et al. Study of modified coefficient of dynamic penetration rod length[J]. Rock and Soil Mechanics, 2014, 35(5): 1284-1288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405010.htm
[11] 石磊, 傅少君, 袁稳沉, 等. 重型动力触探轴向冲击力与锤击能试验研究[J]. 岩石力学与工程学报, 2016, 35(1): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601020.htm SHI Lei, FU Shao-jun, YUAN Wen-chen, et al. Experimental study on axial impacting force and hammer impacting energy in rod of heavy dynamic penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 201-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601020.htm
[12] 左永振, 赵娜. 基于模型试验的重型动力触探杆长修正系数研究[J]. 岩土工程学报, 2016, 38(增刊2): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2029.htm ZUO Yong-zhen, ZHAO Na. Model tests on modified coefficient of heavy dynamic penetration rod length[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 178-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2029.htm
[13] 建筑抗震设计规范:GB 50011—2010[S]. 2010. Code for Seismic Design Of Buildings: GB 50011—2010[S]. 2010. (in Chinese)
[14] YOUD T L, IDRISS I M, RONALD D A, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
[15] IDRISS I M, BOULANGER R W. SPT-based liquefaction triggering procedures[R]. Davis: University of California at Davis, 2010.
[16] SEED H, TOKIMATSU K, HARDER L, et al. Influence of SPT procedures in soil liquefaction resistance evaluation[J]. Journal of Geotechnical Engineering, 1985, 111: 1425-1445.
[17] CAO Z Z, YOUD T L, YUAN X M. Chinese dynamic penetration test for liquefaction evaluation in gravelly soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1320-1333.
[18] 曹振中, 刘荟达, 袁晓铭, 等. 基于动力触探的砾性土液化判别方法通用性研究[J]. 岩土工程学报, 2016, 38(1): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601020.htm CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming, et al. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601020.htm