• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

复杂循环应力路径下冻结粉质黏土的变形特性与安定性行为研究

王亚鹏, 李国玉, 陈敦, 马巍, 张轩

王亚鹏, 李国玉, 陈敦, 马巍, 张轩. 复杂循环应力路径下冻结粉质黏土的变形特性与安定性行为研究[J]. 岩土工程学报, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017
引用本文: 王亚鹏, 李国玉, 陈敦, 马巍, 张轩. 复杂循环应力路径下冻结粉质黏土的变形特性与安定性行为研究[J]. 岩土工程学报, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017
WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017
Citation: WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017

复杂循环应力路径下冻结粉质黏土的变形特性与安定性行为研究  English Version

基金项目: 

国家自然科学基金青年基金项目 42201162

甘肃省青年科技基金计划项目 22JR5RA089

科技基础资源调查专项项目 2022FY100703

国家自然科学基金面上项目 42272339

国家电网公司总部科技项目 5200-202230098A-1-1-ZN

详细信息
    作者简介:

    王亚鹏(1997—),男,博士,主要从事冻土力学与寒区工程方面的研究工作。E-mail: wangyapeng@nieer.ac.cn

    通讯作者:

    陈敦, E-mail: chendun@1zb.ac.cn

  • 中图分类号: TU43

Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths

  • 摘要: 复杂循环应力路径下冻土的变形特性与安定性行为研究对寒区工程的长期稳定性具有重要作用。为分析不同复杂循环应力路径对冻土变形特性与安定性行为的影响,设计不同温度同一水平下的5种循环应力路径,即三轴循环应力路径(TCSP)、定向循环应力路径(DCSP)、圆形循环应力路径(CCSP)、椭圆循环应力路径(ECSP)和心形循环应力路径(HCSP),分析了粉质黏土的轴向累积塑性应变,同时利用3种安定性评价准则对结果进行评估。研究结果表明:不同温度5种循环应力路径下的轴向累积塑性应变满足DCSP > ECSP > HCSP > CCSP > TCSP。安定性评价结果表明,定向循环应力路径对土体的安定性行为影响最大,在3种准则下都属于增量破坏。在-15℃时,心形循环应力路径与椭圆循环应力路径试验结果在Chen-准则评估下也属于增量破坏。
    Abstract: The deformation characteristics and stability behaviors of frozen soil under complex cyclic stress paths play an important role in the long-term stability of cold region engineering. To analyze the influences of different complex cyclic stress paths on the deformation characteristics and shakedown behaviors of frozen soil, five cyclic stress paths are designed at the same level, namely triaxial cyclic stress path (TCSP), directional cyclic stress path (DCSP), circular cyclic stress path (CCSP), elliptical cyclic stress path (ECSP) and heart-shaped cyclic stress path (HCSP). The axial cumulative plastic strains of the samples are analyzed, and the results are evaluated by three shakedown evaluation criteria. The axial cumulative plastic strains under five cyclic stress paths at different temperatures satisfy the following: DCSP > ECSP > HCSP > CCSP > TCSP. The directional cyclic stress path has the greatest influences on the shakedown behaviors of the soil, and the failure belongs to the incremental one under the three criteria. At the temperature of -15℃, the results of the HCSP and ECSP tests also belong to the incremental failure under the evaluation of Chen criterion.
  • 图  1   颗粒级配曲线

    Figure  1.   Grain-size distribution curves of test soil

    图  2   冻土空心圆柱仪装置示意图

    Figure  2.   Schematic representation of hollow cylinder apparatus for frozen soil

    图  3   室内复杂循环应力路径实现

    Figure  3.   Implementation of complex cyclic stress paths in laboratory

    图  4   不同温度下不同循环应力路径轴向累积塑性应变随循环次数的变化

    Figure  4.   Axial cumulative plastic strain versus number of vibrations under various cyclic stress paths at different temperatures

    图  5   不同温度下不同循环应力路径最终轴向累积塑性应变

    Figure  5.   Axial cumulative plastic strains under various cyclic stress paths at different temperatures

    图  6   不同温度下5种循环应力路径二次循环压实阶段的轴向累积塑性应变变化

    Figure  6.   Change of cumulative plastic strain during second-cycle compaction stage under five cyclic stress paths at different temperatures

    图  7   不同温度5种循环应力路径轴向累积塑性应变的3种安定性准则评估

    Figure  7.   Evaluation of three shakedown criteria for axial cumulative plastic strain under five cyclic stress paths at different temperatures

    表  1   试验土体基本物理性质

    Table  1   Physical properties of test soil

    最大干密度ρdmax/(g·cm-3) 最优含水率wopt/% 饱和含水率wsat/% 液限wL/% 塑限wP/% 塑性指数IP
    1.84 17.51 20.12 31.17 17.20 13.97
    下载: 导出CSV

    表  2   试验方案

    Table  2   Test schemes

    试样编号 温度/℃ CSR 应力路径
    TN1~5 -1.5 0.875 TCSP, DCSP, CCSP, ECSP, HCSP
    TN6~10 -6 1.750 TCSP, DCSP, CCSP, ECSP, HCSP
    TN11~15 -15 1.750 TCSP, DCSP, CCSP, ECSP, HCSP
    下载: 导出CSV
  • [1]

    NIE R S, LI Y F, LENG W M, et al. Deformation characteristics of fine-grained soil under cyclic loading with intermittence[J]. Acta Geotechnica, 2020, 15(11): 3041-3054. doi: 10.1007/s11440-020-00955-3

    [2]

    LIN T S, ISHIKAWA T, MARUYAMA K, et al. Pavement design method in Japan with consideration of climate effect and principal stress axis rotation[J]. Transportation Geotechnics, 2021, 28: 100552. doi: 10.1016/j.trgeo.2021.100552

    [3]

    WU T Y, JIN H X, GUO L, et al. Predicting method on settlement of soft subgrade soil caused by traffic loading involving principal stress rotation and loading frequency[J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 107023. doi: 10.1016/j.soildyn.2021.107023

    [4] 董彤, 郑颖人, 孔亮, 等. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804024.htm

    DONG Tong, ZHENG Yingren, KONG Liang, et al. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804024.htm

    [5] 陈敦, 马巍, 王大雁, 等. 定向剪切应力路径下冻结黏土变形特性试验[J]. 岩土力学, 2018, 39(7): 2483-2490.

    CHEN Dun, MA Wei, WANG Dayan, et al. Experimental study of deformation characteristics of frozen clay under directional shear stress path[J]. Rock and Soil Mechanics, 2018, 39(7): 2483-2490. (in Chinese)

    [6] 张斌龙, 王大雁, 马巍, 等. 主应力轴旋转条件下冻结黏土累积塑性应变与临界动应力特性研究[J]. 岩土工程学报, 2023, 45(3): 551-560. doi: 10.11779/CJGE20211149

    ZHANG Binlong, WANG Dayan, MA Wei, et al. Characteristics of cumulative plastic strain and critical dynamic stress of frozen clay under principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 551-560. (in Chinese) doi: 10.11779/CJGE20211149

    [7]

    QIAN J G, WANG Y G, YIN Z Y, et al. Experimental identification of plastic shakedown behavior of saturated clay subjected to traffic loading with principal stress rotation[J]. Engineering Geology, 2016, 214: 29-42. doi: 10.1016/j.enggeo.2016.09.012

    [8]

    ZHOU Z W, MA W, LI G Y, et al. A novel evaluation method for accumulative plastic deformation of granular materials subjected to cyclic loading: taking frozen subgrade soil as an example[J]. Cold Regions Science and Technology, 2020, 179: 103152. doi: 10.1016/j.coldregions.2020.103152

    [9] 王庆志, 周志伟, 张淑娟. 青藏铁路路基粗颗粒填料动力特性和安定性行为研究[J]. 冰川冻土, 2022, 44(2): 566-582. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202020.htm

    WANG Qingzhi, ZHOU Zhiwei, ZHANG Shujuan. Study on dynamic properties and shakedown behaviors of coarse-grained fillers in Qinghai-Tibet Railway subgrade[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 566-582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202020.htm

    [10]

    CHEN D, WANG D Y, MA W, et al. A strength criterion for frozen clay considering the influence of stress Lode angle[J]. Canadian Geotechnical Journal, 2019, 56(11): 1557-1572. doi: 10.1139/cgj-2018-0054

    [11]

    GU F, ZHANG Y Q, LUO X, et al. Characterization and prediction of permanent deformation properties of unbound granular materials for Pavement ME Design[J]. Construction and Building Materials, 2017, 155: 584-592. doi: 10.1016/j.conbuildmat.2017.08.116

    [12]

    WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674. doi: 10.1061/(ASCE)0733-947X(2004)130:5(665)

    [13]

    CHEN W B, FENG W Q, YIN J H, et al. Characterization of permanent axial strain of granular materials subjected to cyclic loading based on shakedown theory[J]. Construction and Building Materials, 2019, 198: 751-761. doi: 10.1016/j.conbuildmat.2018.12.012

图(7)  /  表(2)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  33
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 网络出版日期:  2024-04-19
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回