• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017
Citation: WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017

Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths

More Information
  • Received Date: November 29, 2023
  • Available Online: April 19, 2024
  • The deformation characteristics and stability behaviors of frozen soil under complex cyclic stress paths play an important role in the long-term stability of cold region engineering. To analyze the influences of different complex cyclic stress paths on the deformation characteristics and shakedown behaviors of frozen soil, five cyclic stress paths are designed at the same level, namely triaxial cyclic stress path (TCSP), directional cyclic stress path (DCSP), circular cyclic stress path (CCSP), elliptical cyclic stress path (ECSP) and heart-shaped cyclic stress path (HCSP). The axial cumulative plastic strains of the samples are analyzed, and the results are evaluated by three shakedown evaluation criteria. The axial cumulative plastic strains under five cyclic stress paths at different temperatures satisfy the following: DCSP > ECSP > HCSP > CCSP > TCSP. The directional cyclic stress path has the greatest influences on the shakedown behaviors of the soil, and the failure belongs to the incremental one under the three criteria. At the temperature of -15℃, the results of the HCSP and ECSP tests also belong to the incremental failure under the evaluation of Chen criterion.
  • [1]
    NIE R S, LI Y F, LENG W M, et al. Deformation characteristics of fine-grained soil under cyclic loading with intermittence[J]. Acta Geotechnica, 2020, 15(11): 3041-3054. doi: 10.1007/s11440-020-00955-3
    [2]
    LIN T S, ISHIKAWA T, MARUYAMA K, et al. Pavement design method in Japan with consideration of climate effect and principal stress axis rotation[J]. Transportation Geotechnics, 2021, 28: 100552. doi: 10.1016/j.trgeo.2021.100552
    [3]
    WU T Y, JIN H X, GUO L, et al. Predicting method on settlement of soft subgrade soil caused by traffic loading involving principal stress rotation and loading frequency[J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 107023. doi: 10.1016/j.soildyn.2021.107023
    [4]
    董彤, 郑颖人, 孔亮, 等. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804024.htm

    DONG Tong, ZHENG Yingren, KONG Liang, et al. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804024.htm
    [5]
    陈敦, 马巍, 王大雁, 等. 定向剪切应力路径下冻结黏土变形特性试验[J]. 岩土力学, 2018, 39(7): 2483-2490.

    CHEN Dun, MA Wei, WANG Dayan, et al. Experimental study of deformation characteristics of frozen clay under directional shear stress path[J]. Rock and Soil Mechanics, 2018, 39(7): 2483-2490. (in Chinese)
    [6]
    张斌龙, 王大雁, 马巍, 等. 主应力轴旋转条件下冻结黏土累积塑性应变与临界动应力特性研究[J]. 岩土工程学报, 2023, 45(3): 551-560. doi: 10.11779/CJGE20211149

    ZHANG Binlong, WANG Dayan, MA Wei, et al. Characteristics of cumulative plastic strain and critical dynamic stress of frozen clay under principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 551-560. (in Chinese) doi: 10.11779/CJGE20211149
    [7]
    QIAN J G, WANG Y G, YIN Z Y, et al. Experimental identification of plastic shakedown behavior of saturated clay subjected to traffic loading with principal stress rotation[J]. Engineering Geology, 2016, 214: 29-42. doi: 10.1016/j.enggeo.2016.09.012
    [8]
    ZHOU Z W, MA W, LI G Y, et al. A novel evaluation method for accumulative plastic deformation of granular materials subjected to cyclic loading: taking frozen subgrade soil as an example[J]. Cold Regions Science and Technology, 2020, 179: 103152. doi: 10.1016/j.coldregions.2020.103152
    [9]
    王庆志, 周志伟, 张淑娟. 青藏铁路路基粗颗粒填料动力特性和安定性行为研究[J]. 冰川冻土, 2022, 44(2): 566-582. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202020.htm

    WANG Qingzhi, ZHOU Zhiwei, ZHANG Shujuan. Study on dynamic properties and shakedown behaviors of coarse-grained fillers in Qinghai-Tibet Railway subgrade[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 566-582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202020.htm
    [10]
    CHEN D, WANG D Y, MA W, et al. A strength criterion for frozen clay considering the influence of stress Lode angle[J]. Canadian Geotechnical Journal, 2019, 56(11): 1557-1572. doi: 10.1139/cgj-2018-0054
    [11]
    GU F, ZHANG Y Q, LUO X, et al. Characterization and prediction of permanent deformation properties of unbound granular materials for Pavement ME Design[J]. Construction and Building Materials, 2017, 155: 584-592. doi: 10.1016/j.conbuildmat.2017.08.116
    [12]
    WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674. doi: 10.1061/(ASCE)0733-947X(2004)130:5(665)
    [13]
    CHEN W B, FENG W Q, YIN J H, et al. Characterization of permanent axial strain of granular materials subjected to cyclic loading based on shakedown theory[J]. Construction and Building Materials, 2019, 198: 751-761. doi: 10.1016/j.conbuildmat.2018.12.012
  • Related Articles

    [1]Prediction of Elastic Modulus and Uniaxial Compression Failure of Basalt Based on Nanoindentation Experiment and Upscaling methods[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240541
    [2]LIU Xian, YANG Zhen-hua, MEN Yan-qing. Temporal variation laws of longitudinal stress on cross section of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 188-193. DOI: 10.11779/CJGE202101022
    [3]WEI Ran, WU Shuai-feng, WANG Xiao-gang, CAI Hong. Theoretical basis and application verification of scale effects of deformation characteristics of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 161-166,213. DOI: 10.11779/CJGE2020S1032
    [4]LIANG Fa-yun, JIA Ya-jie, DENG Hang, YAO Xiao-qing. Discussions on elastic parameters of soil for land subsidence caused by decompression of confined aquifer in deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 29-32. DOI: 10.11779/CJGE2017S2008
    [5]YANG Guang-hua, HUANG Zhi-xing, LI Zi-yun, JIANG Yan, LI De-ji. Simplified method for nonlinear settlement calculation in soft soils considering lateral deformation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1697-1704. DOI: 10.11779/CJGE201709018
    [6]TONG Li-yuan, TU Qi-zhu, DU Guang-yin, CAI Guo-jun. Determination of confined compression modulus of soft clay using piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 569-572.
    [7]WANG Li-yan, GAO Peng, CHEN Guo-xing, FU Ren-jian. Experimental study on deformation behavior and shear strength of mixed soil blended with steel slag[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 126-132.
    [8]YAN Dong-xu, XU Wei-ya, WANG Wei, SHI Chong, SHI An-chi, WU Guan-ye. Research of size effect on equivalent elastic modulus of columnar jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 243-250.
    [9]MEN Kai, HE Keqiang, GUO Dong, SUN Linna, ZHANG Wen. Discussion on "Nonlinear settlement computation of the soil foundation with the undisturbed soil tangent modulus method"[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 309-310.
    [10]Shi Zhaoji, Feng Wanling, Zhang Zhanji. The Measurement of Dynamic Young's Modulus by Resonant Column Method[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(6): 25-32.
  • Cited by

    Periodical cited type(4)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 .
    3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 .

    Other cited types(15)

Catalog

    Article views (156) PDF downloads (26) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return