Micromechanics-based stress-dilatancy relationship for granular materials
-
摘要: 从微观力学角度出发,基于真应力张量推导了散体中平均接触力与平均接触位移的计算公式,并通过宏-微观能量守恒得到了考虑散体各向异性组构及其演化的应力-剪胀关系;详细分析了剪胀参数的物理意义及对剪胀性的影响,并与经典的剑桥流动法则、Rowe剪胀方程以及室内试验结果进行了比较分析。研究结果表明,提出的应力-剪胀关系宏微观物理意义明确,考虑了材料密实状态和微观各向异性组构及其演化对应力-剪胀关系的影响,可以很好地模拟散粒体的初始剪胀(缩)行为,并可反映峰值应力比滞后于最大剪胀比的现象。同时提出的应力-剪胀方程还可以描述材料在相变点处应力比不等于临界应力比的现象,与已有室内试验结果一致,能够较好地预测散体材料三轴条件下的各向异性应力-剪胀关系。Abstract: From the perspective of micromechanics, the formulas for the average contact force and contact displacement in the granular are derived based on the true stress tensor, then the stress-shear dilatancy relationship considering the fabric anisotropy and its evolution is obtained through the macro-micro energy conservation. In addition, the physical meaning of dilatancy parameters and their influence on dilatancy are analyzed. Finally, the proposed formulation is compared with the classical Cambridge flow law, Rowe dilatancy equation and test results to calibrate its reasonableness and applicability. The proposed stress-dilatancy relationship with clear physical meaning can describe the initial dilatancy (contraction) behavior for granular materials, considering the anisotropic evolution of fabric and the influence of the density on the dilatancy. Moreover, the proposed stress-dilatancy equation can reflect that the stress ratio at the phase transition point is less than the critical stress ratio and the peak stress ratio emerges behind the maximum dilatancy ratio. It is in good agreement with the test results and can better predict the anisotropic stress-dilatancy relationship of granular materials.
-
-
[1] SCHOFIELD A, WROTH P. Critical State Soil Mechanics[M]. London: McGraw-Hill, 1968.
[2] NOVA R, WOOD D M. A constitutive model for sand in triaxial compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(3): 255-278. doi: 10.1002/nag.1610030305
[3] LAGIOIA R, PUZRIN A M, POTTS D M. A new versatile expression for yield and plastic potential surfaces[J]. Computers & Geotechnics, 1996, 19(3): 171-191.
[4] ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, 1962, 269(1339): 500-527.
[5] GUO P J, STOLLE D F. The extension of Rowe’s stress-dilatancy model to general stress condition[J]. Soils and Foundations, 2004, 44(4): 1-10. doi: 10.3208/sandf.44.4_1
[6] 蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 1122-1128. doi: 10.3321/j.issn:1000-4548.2007.08.002 CAI Zheng-yin, LI Xiang-song. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1122-1128. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.08.002
[7] WAN R, GUO P. A pressure and density dependent dilatancy model for granular materials[J]. Soils and Foundations, 1999, 39(6): 1-11. doi: 10.3208/sandf.39.6_1
[8] LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
[9] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
[10] MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272. doi: 10.1680/geot.1997.47.2.255
[11] GAJO A, MUIR WOOD D. Severn-Trent sand: a kinematic-hardening constitutive model: the qp formulation[J]. Géotechnique, 1999, 49(5): 595-614. doi: 10.1680/geot.1999.49.5.595
[12] WANG R, DAFALIAS Y F, FU P, et al. Fabric evolution and dilatancy within anisotropic critical state theory guided and validated by DEM[J]. International Journal of Solids and Structures, 2019, 188-189(3): 210-222.
[13] TOBITA Y. Fabric tensors in constitutive equations for granular materials[J]. Soils and Foundations, 1989, 29(4): 91-104. doi: 10.3208/sandf1972.29.4_91
[14] ZHAO J, GUO N. Unique critical state characteristics in granular media considering fabric anisotropy[J]. Géotechnique, 2013, 63(8): 695-704. doi: 10.1680/geot.12.P.040
[15] YIN Z Y, CHANG C S. Stress-dilatancy behavior for sand under loading and unloading conditions[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2013, 37(8): 855-870.
[16] LIU Y, CHANG C S. Relationship between element-level and contact-level parameters of micromechanical and upscaled plasticity models for granular soils[J]. Acta Geotechnica, 2020, 15(7): 1779-1798. doi: 10.1007/s11440-019-00895-7
[17] XIAO Y, ASCE M, LONG L, et al. Effect of particle shape on stress-dilatancy responses of medium-dense sands[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2018, 145(2): 04018105.
[18] LIANG J, LU D, DU X, et al. A 3D non-orthogonal elastoplastic constitutive model for transversely isotropic soil[J]. Acta Geotechnica, 2021, in press.
[19] TSEGAYE A B, BENZ T, NORDAL S. Formulation of non-coaxial plastic dissipation and stress-dilatancy relations for geomaterials[J]. Acta Geotechnica, 2020, 15(10): 2727-2739. doi: 10.1007/s11440-020-00968-y
[20] 杨骏堂, 刘元雪, 郑颖人, 等. 剪胀型土剪胀特性的大数据深度挖掘与模型研究[J]. 岩土工程学报, 2020, 42(3): 513-522. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003018.htm YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren et al. Deep mining of big data and model tests on dilatancy characteristics of dilatant soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 513-522. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003018.htm
[21] LIAO C L, CHANG T P, YOUNG D H, et al. Stress-strain relationship for granular materials based on the hypothesis of best fit[J]. International Journal of Solids and Structures, 1997, 34(31/32): 4087-4100.
[22] 刘洋, CHANG C S, 张铎, 等. 散粒介质三维应力-组构解析与破坏分析[J]. 岩土工程学报, 2014, 36(3): 401-408. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403002.htm LIU Yang, CHANG C S, ZHANG Duo, et al. Analytical solution of stress-fabric relationship and failure of granularmaterials in three dimensions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 401-408. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403002.htm
[23] CHANG C S, MISRA A. Packing structure and mechanical properties of granulates[J]. Journal of Engineering Mechanics, 1990, 116(5): 1077-1093. doi: 10.1061/(ASCE)0733-9399(1990)116:5(1077)
[24] ODA M, KONISHI J, NEMAT-NASSER S. Some experimentally based fundamental results on the mechanical behaviour of granular materials[J]. Géotechnique, 1980, 30(4): 479-495. doi: 10.1680/geot.1980.30.4.479
[25] ODA M, NEMAT-NASSER S, KONISHI J. Stress-induced anisotropy in granular masses[J]. Soils and Foundations, 1985, 25(3): 85-97. doi: 10.3208/sandf1972.25.3_85
[26] WAN R G, GUO P J. Stress dilatancy and fabric dependencies on sand behavior[J]. Journal of Engineering Mechanics, 2004, 130(6): 635-645. doi: 10.1061/(ASCE)0733-9399(2004)130:6(635)
[27] BEEN K, JEFFERIES M. Stress dilatancy in very loose sand[J]. Canadian Geotechnical Journal, 2004, 41(5): 972-989. doi: 10.1139/t04-038
[28] LIU D Y, LOURENÇO S D N. Stress-dilatancy behaviour of a polymer-coated sand[J]. Acta Geotechnica, 2021, 16(2): 647-652. doi: 10.1007/s11440-020-01022-7
[29] REGIER K. The stress-dilatancy behaviour of sands: pressure and density dependencies in both monotonic and cyclic loading regimes[M]. Calgary: University of Calgary, 1997.
[30] PRADHAN T B, TATSUOKA F, SATO Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading[J]. Soils and Foundations, 1989, 29(1): 45-64. doi: 10.3208/sandf1972.29.45
-
期刊类型引用(16)
1. 刘鹤冰. 川东红层地区隧道设计优化研究. 铁道建筑技术. 2025(03): 101-104 . 百度学术
2. 邓子昂,张继勋,张玉贤,孙艳鹏. 代理模型驱动的隧洞支护方案多目标优化方法. 水力发电学报. 2025(04): 59-71 . 百度学术
3. 洪开荣,刘永胜,潘岳. 钻爆法山岭隧道修建技术发展与展望. 现代隧道技术. 2024(02): 67-79 . 百度学术
4. 赵建利,郝雪航,余洋,李鹏程,高华民. 苏基克纳里水电站调压竖井无锚支护研究. 河北水利电力学院学报. 2024(03): 38-44 . 百度学术
5. 侯艳娟,张顶立,李然,陈旭,齐伟伟. 深埋三连拱隧道围岩压力计算方法. 力学学报. 2024(11): 3213-3226 . 百度学术
6. 丁祥,刘勇,任玉鹏,韩智铭,马凯蒙. 以初期支护为主要承载结构的衬砌参数优化研究. 公路. 2024(12): 487-492 . 百度学术
7. 张顶立,孙振宇,陶伟明. 隧道围岩大变形灾害特点与主动控制方法. 铁道标准设计. 2023(01): 1-9 . 百度学术
8. 陈文博,张顶立,孙振宇,陈旭,孟令赞. 铁路隧道概率极限状态设计分项系数标定与讨论. 铁道标准设计. 2023(01): 17-24 . 百度学术
9. 姚志雄,刘梦飞,吴波,刘耀星,陈希茂,郑国文,罗芷祎. 基于承载特性的群洞稳定性及初期支护优化研究. 现代隧道技术. 2023(01): 119-129 . 百度学术
10. 刘鹤冰. 基于投资控制的高速公路PPP项目投资人对设计人的管理研究. 铁道建筑技术. 2023(09): 199-202 . 百度学术
11. 梁鹏,高永涛,周喻,邓代强. 隧道初支合理支护时机确定方法及其工程应用. 工程科学学报. 2022(02): 265-276 . 百度学术
12. 刘鹤冰. PPP模式下高速公路项目设计优化全过程管理探究. 铁道建筑技术. 2022(09): 131-135 . 百度学术
13. 王嘉琛,张顶立,孙振宇,方黄城,刘昌. 水平互层围岩隧道破坏机理及其范围预测模型. 力学学报. 2022(10): 2835-2849 . 百度学术
14. 刘耀儒,侯少康,程立,黄跃群. 水利工程智能建造进展及关键技术. 水利水电技术(中英文). 2022(10): 1-20 . 百度学术
15. 彭磊. 公路小净距隧道后行洞支护结构位移及受力特性分析. 产业科技创新. 2021(01): 105-107 . 百度学术
16. 焦战,肖洪天. 基于博弈赋权和综合灰色关联的围岩支护评价. 科学技术与工程. 2021(34): 14769-14774 . 百度学术
其他类型引用(29)