• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Yang, YU Peng-qiang, ZHANG Duo, WANG Xiao-xiao. Micromechanics-based stress-dilatancy relationship for granular materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1816-1824. DOI: 10.11779/CJGE202110007
Citation: LIU Yang, YU Peng-qiang, ZHANG Duo, WANG Xiao-xiao. Micromechanics-based stress-dilatancy relationship for granular materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1816-1824. DOI: 10.11779/CJGE202110007

Micromechanics-based stress-dilatancy relationship for granular materials

More Information
  • Received Date: September 07, 2020
  • Available Online: December 02, 2022
  • From the perspective of micromechanics, the formulas for the average contact force and contact displacement in the granular are derived based on the true stress tensor, then the stress-shear dilatancy relationship considering the fabric anisotropy and its evolution is obtained through the macro-micro energy conservation. In addition, the physical meaning of dilatancy parameters and their influence on dilatancy are analyzed. Finally, the proposed formulation is compared with the classical Cambridge flow law, Rowe dilatancy equation and test results to calibrate its reasonableness and applicability. The proposed stress-dilatancy relationship with clear physical meaning can describe the initial dilatancy (contraction) behavior for granular materials, considering the anisotropic evolution of fabric and the influence of the density on the dilatancy. Moreover, the proposed stress-dilatancy equation can reflect that the stress ratio at the phase transition point is less than the critical stress ratio and the peak stress ratio emerges behind the maximum dilatancy ratio. It is in good agreement with the test results and can better predict the anisotropic stress-dilatancy relationship of granular materials.
  • [1]
    SCHOFIELD A, WROTH P. Critical State Soil Mechanics[M]. London: McGraw-Hill, 1968.
    [2]
    NOVA R, WOOD D M. A constitutive model for sand in triaxial compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(3): 255-278. doi: 10.1002/nag.1610030305
    [3]
    LAGIOIA R, PUZRIN A M, POTTS D M. A new versatile expression for yield and plastic potential surfaces[J]. Computers & Geotechnics, 1996, 19(3): 171-191.
    [4]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, 1962, 269(1339): 500-527.
    [5]
    GUO P J, STOLLE D F. The extension of Rowe’s stress-dilatancy model to general stress condition[J]. Soils and Foundations, 2004, 44(4): 1-10. doi: 10.3208/sandf.44.4_1
    [6]
    蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 1122-1128. doi: 10.3321/j.issn:1000-4548.2007.08.002

    CAI Zheng-yin, LI Xiang-song. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1122-1128. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.08.002
    [7]
    WAN R, GUO P. A pressure and density dependent dilatancy model for granular materials[J]. Soils and Foundations, 1999, 39(6): 1-11. doi: 10.3208/sandf.39.6_1
    [8]
    LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
    [9]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [10]
    MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272. doi: 10.1680/geot.1997.47.2.255
    [11]
    GAJO A, MUIR WOOD D. Severn-Trent sand: a kinematic-hardening constitutive model: the qp formulation[J]. Géotechnique, 1999, 49(5): 595-614. doi: 10.1680/geot.1999.49.5.595
    [12]
    WANG R, DAFALIAS Y F, FU P, et al. Fabric evolution and dilatancy within anisotropic critical state theory guided and validated by DEM[J]. International Journal of Solids and Structures, 2019, 188-189(3): 210-222.
    [13]
    TOBITA Y. Fabric tensors in constitutive equations for granular materials[J]. Soils and Foundations, 1989, 29(4): 91-104. doi: 10.3208/sandf1972.29.4_91
    [14]
    ZHAO J, GUO N. Unique critical state characteristics in granular media considering fabric anisotropy[J]. Géotechnique, 2013, 63(8): 695-704. doi: 10.1680/geot.12.P.040
    [15]
    YIN Z Y, CHANG C S. Stress-dilatancy behavior for sand under loading and unloading conditions[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2013, 37(8): 855-870.
    [16]
    LIU Y, CHANG C S. Relationship between element-level and contact-level parameters of micromechanical and upscaled plasticity models for granular soils[J]. Acta Geotechnica, 2020, 15(7): 1779-1798. doi: 10.1007/s11440-019-00895-7
    [17]
    XIAO Y, ASCE M, LONG L, et al. Effect of particle shape on stress-dilatancy responses of medium-dense sands[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2018, 145(2): 04018105.
    [18]
    LIANG J, LU D, DU X, et al. A 3D non-orthogonal elastoplastic constitutive model for transversely isotropic soil[J]. Acta Geotechnica, 2021, in press.
    [19]
    TSEGAYE A B, BENZ T, NORDAL S. Formulation of non-coaxial plastic dissipation and stress-dilatancy relations for geomaterials[J]. Acta Geotechnica, 2020, 15(10): 2727-2739. doi: 10.1007/s11440-020-00968-y
    [20]
    杨骏堂, 刘元雪, 郑颖人, 等. 剪胀型土剪胀特性的大数据深度挖掘与模型研究[J]. 岩土工程学报, 2020, 42(3): 513-522. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003018.htm

    YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren et al. Deep mining of big data and model tests on dilatancy characteristics of dilatant soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 513-522. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003018.htm
    [21]
    LIAO C L, CHANG T P, YOUNG D H, et al. Stress-strain relationship for granular materials based on the hypothesis of best fit[J]. International Journal of Solids and Structures, 1997, 34(31/32): 4087-4100.
    [22]
    刘洋, CHANG C S, 张铎, 等. 散粒介质三维应力-组构解析与破坏分析[J]. 岩土工程学报, 2014, 36(3): 401-408. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403002.htm

    LIU Yang, CHANG C S, ZHANG Duo, et al. Analytical solution of stress-fabric relationship and failure of granularmaterials in three dimensions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 401-408. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403002.htm
    [23]
    CHANG C S, MISRA A. Packing structure and mechanical properties of granulates[J]. Journal of Engineering Mechanics, 1990, 116(5): 1077-1093. doi: 10.1061/(ASCE)0733-9399(1990)116:5(1077)
    [24]
    ODA M, KONISHI J, NEMAT-NASSER S. Some experimentally based fundamental results on the mechanical behaviour of granular materials[J]. Géotechnique, 1980, 30(4): 479-495. doi: 10.1680/geot.1980.30.4.479
    [25]
    ODA M, NEMAT-NASSER S, KONISHI J. Stress-induced anisotropy in granular masses[J]. Soils and Foundations, 1985, 25(3): 85-97. doi: 10.3208/sandf1972.25.3_85
    [26]
    WAN R G, GUO P J. Stress dilatancy and fabric dependencies on sand behavior[J]. Journal of Engineering Mechanics, 2004, 130(6): 635-645. doi: 10.1061/(ASCE)0733-9399(2004)130:6(635)
    [27]
    BEEN K, JEFFERIES M. Stress dilatancy in very loose sand[J]. Canadian Geotechnical Journal, 2004, 41(5): 972-989. doi: 10.1139/t04-038
    [28]
    LIU D Y, LOURENÇO S D N. Stress-dilatancy behaviour of a polymer-coated sand[J]. Acta Geotechnica, 2021, 16(2): 647-652. doi: 10.1007/s11440-020-01022-7
    [29]
    REGIER K. The stress-dilatancy behaviour of sands: pressure and density dependencies in both monotonic and cyclic loading regimes[M]. Calgary: University of Calgary, 1997.
    [30]
    PRADHAN T B, TATSUOKA F, SATO Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading[J]. Soils and Foundations, 1989, 29(1): 45-64. doi: 10.3208/sandf1972.29.45
  • Cited by

    Periodical cited type(8)

    1. 王亚军,白晨帆,蒋应军,李瀚盛,范江涛,袁可佳. 挤密桩对大厚度黄土地基浸水沉降的影响. 铁道建筑. 2025(02): 126-133 .
    2. 李琳,王家鼎,谷琪,张登飞,焦少通. 古土壤层间富水对黄土场地湿陷性的影响. 西北大学学报(自然科学版). 2024(01): 72-83 .
    3. 黄华,刘瑞阳,刘笑笑,柳明亮. 黄土湿陷特性及其改性方法研究进展. 建筑科学与工程学报. 2024(02): 1-16 .
    4. 雷勇. 高压喷射气体劈裂湿陷性黄土效果研究. 铁道建筑技术. 2024(06): 20-24 .
    5. 胡锦方,潘亮,张爱军,任文渊,梁志超. 棉秆纤维EPS颗粒轻量土配合比设计. 水利水运工程学报. 2023(01): 112-119 .
    6. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 .
    7. 牛丽思,张爱军,王毓国,任文渊,张婉. 湿度和密度变化下伊犁黄土的压缩和湿陷特性. 水力发电学报. 2021(02): 167-176 .
    8. 王文辉,何毅,张立峰,陈有东,唐源蔚,邱丽莎,张新秀. 基于PS-InSAR和GeoDetector的兰州主城区地表变形监测与驱动力分析. 兰州大学学报(自然科学版). 2021(03): 382-388+394 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return