Experimental study on liquefaction characteristics of marine fine-grained sand based on critical state theory
-
摘要: 采用饱和海相含细粒土砂开展固结不排水三轴剪切试验和轴向-扭转耦合循环剪切试验,基于临界状态理论,研究砂土状态参数与其液化特性的关系。研究结果表明:对于海相含细粒土砂,其临界孔隙比和归一化有效平均正应力具有很高的线性相关性;轴向-扭转耦合不排水循环剪切试验结果显示,循环应力比CRR相同时,状态参数ψ越大,液化振次NL越小,根据研究结果提出砂土液化振次NL的计算公式,NL与ψ很好的满足指数函数关系。
-
关键词:
- 含细粒土砂 /
- 轴向-扭转耦合循环剪切试验 /
- 临界状态 /
- 液化 /
- 循环应力比
Abstract: The consolidated undrained triaxial shear tests and coupled axial-torsional cyclic shear tests are conducted using the marine fine-grained sand to study the correlation between the critical state parameter and the liquefaction characteristics based on the critical state theory. The tests results show a linear correlation between the critical void ratio and the normalized effective normal stress. The results of the coupled axial-torsional cyclic shear tests show that the cycle number for liquefaction, NL, decreases with the increasing state parameter, ψ, for a certain cyclic resistance ratio. Finally, an exponential function for expressing the relationship between NL and ψ is proposed. -
-
表 1 三轴试验参数
Table 1 Triaxial test parameters
试验编号 初始有效平均应力 固结后ecs 临界状态有效平均应力 CU1 100 1.051 124 CU2 100 0.980 325 CU3 200 0.964 438 CU4 400 0.942 580 表 2 空心圆柱循环扭剪试验参数
Table 2 Parameters of hollow cylinder torsional tests
试验编号 固结后ecs τd CRR NL ψ HCA1 100 0.984 7.5 0.106 40 -0.166 HCA2 100 0.988 10.0 0.141 14 -0.163 HCA3 100 0.994 12.5 0.177 3 -0.162 HCA4 200 0.969 15.0 0.106 98 -0.215 HCA5 200 0.978 20.0 0.141 25 -0.206 HCA6 200 0.975 25.0 0.177 5 -0.209 HCA7 300 0.958 22.5 0.106 220 -0.258 HCA8 300 0.963 30.0 0.141 39 -0.254 HCA9 300 0.959 37.5 0.177 11 -0.258 -
[1] XU C S, FENG C Q, DU X L, et al. Study on liquefaction mechanism of saturated sand considering stress redistribution[J]. Engineering Geology, 2020, 264: 105302. doi: 10.1016/j.enggeo.2019.105302
[2] NI X Q, ZHANG Z, YE B, et al. Unique relation between pore water pressure generated at the first loading cycle and liquefaction resistance[J]. Engineering Geology, 2022, 296: 106476. doi: 10.1016/j.enggeo.2021.106476
[3] 左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究[J]. 岩土工程学报, 2023, 45(7): 1461-1470. doi: 10.11779/CJGE20220401 ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. (in Chinese) doi: 10.11779/CJGE20220401
[4] SEED H B, MARTIN P P, LYSMER J. The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction[M]. Berkeley: College of Engineering, University of California, Berkeley. 1975.
[5] GREEN R A, MITCHELL J K, POLITO C P. An energy-based excess pore pressure generation model for cohesionless soils[C]// Proceedings of the John Booker Memorial Symposium, Sidney Australia. Rotterdam: A A Balkema Publishers. 2000.
[6] QADIMI A, COOP M R. The undrained cyclic behaviour of a carbonate sand[J]. Géotechnique, 2007, 57(9): 739-750. doi: 10.1680/geot.2007.57.9.739
[7] JEFFERIES M, BEEN K. Soil liquefaction: a critical state approach[M]. Boca Raton: CRC press, 2015.
[8] QADIMI A, MOHAMMADI A. Evaluation of state indices in predicting the cyclic and monotonic strength of sands with different fines contents[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 443-458. doi: 10.1016/j.soildyn.2014.08.002
[9] PORCINO D D, TRIANTAFYLLIDIS T, WICHTMANN T, et al. Using different state parameters for characterizing undrained static and cyclic behavior of sand with non-plastic fines[J]. Soil Dynamics and Earthquake Engineering, 2022, 159: 107318. doi: 10.1016/j.soildyn.2022.107318
[10] HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383. doi: 10.1680/geot.1983.33.4.355
[11] LI X S, CAI Z Y. Effects of low-number previbration cycles on dynamic properties of dry sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(11): 979-987. doi: 10.1061/(ASCE)1090-0241(1999)125:11(979)
[12] CAI Z. A Comprehensive Study of State-Dependent Dilatancy And its Application in Shear Band Formation Analysis[D]. Hong Kong: Hong Kong University of Science and Technology, 2001.
-
期刊类型引用(5)
1. 赵云,杨忠方,张朋,凌道盛. 非饱和砂土中深埋活动门试验松动土压力计算. 岩土工程学报. 2025(04): 769-778 . 本站查看
2. 李明宇,朱康康,陈健,蔺云宏,吴龙骥,靳军伟,杨潇. 考虑土体剪切与接头剪切效应的盾构隧道纵向变形计算模型. 中国铁道科学. 2024(01): 142-154 . 百度学术
3. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 . 百度学术
4. 陈志敏,刘宝莉,陈骏,翟文浩,李文豪,王铎斌,蔡昀辰. 考虑颗粒组成与含水率的冰碛体成拱规律研究. 现代隧道技术. 2024(05): 200-209 . 百度学术
5. 陈星欣,何明高,施文城,郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算. 岩土工程学报. 2024(12): 2652-2660 . 本站查看
其他类型引用(10)