• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Shixing, TANG Yi, GUAN Yunfei. Experimental study on liquefaction characteristics of marine fine-grained sand based on critical state theory[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 63-66. DOI: 10.11779/CJGE2023S10026
Citation: CAI Shixing, TANG Yi, GUAN Yunfei. Experimental study on liquefaction characteristics of marine fine-grained sand based on critical state theory[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 63-66. DOI: 10.11779/CJGE2023S10026

Experimental study on liquefaction characteristics of marine fine-grained sand based on critical state theory

More Information
  • Received Date: July 05, 2023
  • Available Online: November 23, 2023
  • The consolidated undrained triaxial shear tests and coupled axial-torsional cyclic shear tests are conducted using the marine fine-grained sand to study the correlation between the critical state parameter and the liquefaction characteristics based on the critical state theory. The tests results show a linear correlation between the critical void ratio and the normalized effective normal stress. The results of the coupled axial-torsional cyclic shear tests show that the cycle number for liquefaction, NL, decreases with the increasing state parameter, ψ, for a certain cyclic resistance ratio. Finally, an exponential function for expressing the relationship between NL and ψ is proposed.
  • [1]
    XU C S, FENG C Q, DU X L, et al. Study on liquefaction mechanism of saturated sand considering stress redistribution[J]. Engineering Geology, 2020, 264: 105302. doi: 10.1016/j.enggeo.2019.105302
    [2]
    NI X Q, ZHANG Z, YE B, et al. Unique relation between pore water pressure generated at the first loading cycle and liquefaction resistance[J]. Engineering Geology, 2022, 296: 106476. doi: 10.1016/j.enggeo.2021.106476
    [3]
    左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究[J]. 岩土工程学报, 2023, 45(7): 1461-1470. doi: 10.11779/CJGE20220401

    ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. (in Chinese) doi: 10.11779/CJGE20220401
    [4]
    SEED H B, MARTIN P P, LYSMER J. The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction[M]. Berkeley: College of Engineering, University of California, Berkeley. 1975.
    [5]
    GREEN R A, MITCHELL J K, POLITO C P. An energy-based excess pore pressure generation model for cohesionless soils[C]// Proceedings of the John Booker Memorial Symposium, Sidney Australia. Rotterdam: A A Balkema Publishers. 2000.
    [6]
    QADIMI A, COOP M R. The undrained cyclic behaviour of a carbonate sand[J]. Géotechnique, 2007, 57(9): 739-750. doi: 10.1680/geot.2007.57.9.739
    [7]
    JEFFERIES M, BEEN K. Soil liquefaction: a critical state approach[M]. Boca Raton: CRC press, 2015.
    [8]
    QADIMI A, MOHAMMADI A. Evaluation of state indices in predicting the cyclic and monotonic strength of sands with different fines contents[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 443-458. doi: 10.1016/j.soildyn.2014.08.002
    [9]
    PORCINO D D, TRIANTAFYLLIDIS T, WICHTMANN T, et al. Using different state parameters for characterizing undrained static and cyclic behavior of sand with non-plastic fines[J]. Soil Dynamics and Earthquake Engineering, 2022, 159: 107318. doi: 10.1016/j.soildyn.2022.107318
    [10]
    HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383. doi: 10.1680/geot.1983.33.4.355
    [11]
    LI X S, CAI Z Y. Effects of low-number previbration cycles on dynamic properties of dry sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(11): 979-987. doi: 10.1061/(ASCE)1090-0241(1999)125:11(979)
    [12]
    CAI Z. A Comprehensive Study of State-Dependent Dilatancy And its Application in Shear Band Formation Analysis[D]. Hong Kong: Hong Kong University of Science and Technology, 2001.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return