Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

玄武岩纤维对黏土干缩开裂特征的影响

王峰, 原俊红, 吴图那胜

王峰, 原俊红, 吴图那胜. 玄武岩纤维对黏土干缩开裂特征的影响[J]. 岩土工程学报, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003
引用本文: 王峰, 原俊红, 吴图那胜. 玄武岩纤维对黏土干缩开裂特征的影响[J]. 岩土工程学报, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003
WANG Feng, YUAN Junhong, WU Tunasheng. Influences of basalt fibers on characteristics of shrinkage cracking of clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003
Citation: WANG Feng, YUAN Junhong, WU Tunasheng. Influences of basalt fibers on characteristics of shrinkage cracking of clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003

玄武岩纤维对黏土干缩开裂特征的影响  English Version

基金项目: 

内蒙古自然科学基金项目 2021MS04023

详细信息
    作者简介:

    作者简介:王 峰(1997—),男,硕士研究生,主要从事岩土工程有关的研究。E-mail: 2746580884@qq.com

    通讯作者:

    原俊红, E-mail: yjh@imu.edu.cn

  • 中图分类号: TU442

Influences of basalt fibers on characteristics of shrinkage cracking of clay

  • 摘要: 黏土的膨胀收缩会导致裂缝的产生,裂缝的产生会显著改变其水理-力学性能,常引起各类工程地质问题。为了研究玄武岩纤维对黏土抗裂性的改善作用,进行了室内试验,对取自呼和浩特市郊区某建筑工地黏土,共设计5组试样以定量分析纤维掺量对黏土开裂的影响,并采用数字图像处理技术进行了分析,并结果表明:土体试样的开裂可分为三个阶段,分别为裂隙产生阶段、裂隙网格形成阶段、裂隙宽度扩展阶段;在掺入纤维的土体试样中,其裂隙之间的正交性会发生改变,并会产生更多的死端裂隙;玄武岩纤维抑制了土体的开裂,降低了裂隙宽度、裂隙比,随着纤维含量的增加,土体试样首次开裂所对应的含水率减小。
    Abstract: The expansion and contraction of clay can lead to the formation of cracks, which can significantly alter its hydraulic and mechanical properties and often cause various engineering geological problems. In this study, the indoor experiments are conducted to investigate the improvement effects of basalt fibers on the cracking resistance of clay. A total of 5 sets of samples are designed to quantitatively analyze the effects of fiber content on clay cracking. The soil is taken from a construction site in the suburbs of Hohhot and analyzed using the digital image processing technology. The final results show that the cracking of the soil samples can be divided into three stages: crack generation stage, crack grid formation stage, and crack width expansion stage. In the soil samples mixed with fibers, the orthogonality between the cracks will change, and more dead end cracks will be generated. Through the researches, it is found that the basalt fibers inhibit the cracking of soil, reducing the width and ratio of cracks. With the increase of the fiber content, the moisture content corresponding to the first cracking of the soil samples decreases.
  • 图  1   图像处理过程

    Figure  1.   Image processing process

    图  2   含水率随时间变化图

    Figure  2.   Variation of moisture content over time

    图  3   裂隙发育过程

    Figure  3.   Crack development process

    图  4   平均裂缝宽度随时间变化图

    Figure  4.   Variation of average crack width over time

    图  5   裂隙比-含水率变化图

    Figure  5.   Variation of crack ratio-moisture content

    图  6   纤维桥接作用(放大图)

    Figure  6.   Bridging effects of fibers (enlarged image)

    图  7   龟裂演化机制

    Figure  7.   Evolution mechanism of cracking

    表  1   土的基本物理参数

    Table  1   Basic physical parameters of soil

    土体类型 Gs 塑限wP/% 液限wL/% 塑性指数IP 颗粒成分/%
    砂粒 粉粒 黏粒
    黏土 2.71 25.3 53.7 28.4 48.19 26.35 25.46
    下载: 导出CSV
  • [1]

    JAVADI S, GHAVAMI M, ZHAO Q, et al. Advection and retardation of non-polar contaminants in compacted clay barrier material with organoclay amendment[J]. Applied Clay Science, 2017, 142: 30-39. doi: 10.1016/j.clay.2016.10.041

    [2]

    DEMDOUM A, GUEDDOUDA M K, GOUAL I, et al. Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture[J]. Construction and Building Materials, 2020, 234: 117356. doi: 10.1016/j.conbuildmat.2019.117356

    [3]

    SAFARI E, JALILI GHAZIZADE M, ABDULI M A, et al. Variation of crack intensity factor in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without geotextile cover[J]. Waste Management, 2014, 34(8): 1408-1415. doi: 10.1016/j.wasman.2014.03.029

    [4]

    LI J, TANG C S, WANG D Y, et al. Effect of discrete fibre reinforcement on soil tensile strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 133-137. doi: 10.1016/j.jrmge.2014.01.003

    [5]

    HEJAZI S M, SHEIKHZADEH M, ABTAHI S M, et al. A simple review of soil reinforcement by using natural and synthetic fibers[J]. Construction and Building Materials, 2012, 30: 100-116. doi: 10.1016/j.conbuildmat.2011.11.045

    [6]

    NARANI S S, ABBASPOUR M, MIR MOHAMMAD HOSSEINI S M, et al. Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: with a special focus on landfill liners/covers[J]. Journal of Cleaner Production, 2020, 247: 119151. doi: 10.1016/j.jclepro.2019.119151

    [7]

    TANG C S, SHI B, GAO W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(3): 194-202. doi: 10.1016/j.geotexmem.2006.11.002

    [8]

    SHAH V, WANARE R, R IYER K K, et al. Evaluation of the role of fibres and admixture(s) on sustainable crack reduction in expansive soil[J]. Materials Today: Proceedings, 2023.

    [9]

    OWINO A O, HOSSAIN Z. The influence of basalt fiber filament length on shear strength development of chemically stabilized soils for ground improvement[J]. Construction and Building Materials, 2023, 374: 130930. doi: 10.1016/j.conbuildmat.2023.130930

    [10]

    NDEPETE C P, SERT S, BEYCIOĞLU A, et al. Exploring the effect of basalt fibers on maximum deviator stress and failure deformation of silty soils using ANN, SVM and FL supported by experimental data[J]. Advances in Engineering Software, 2022, 172: 103211. doi: 10.1016/j.advengsoft.2022.103211

    [11]

    PARASTAR F, HEJAZI S M, SHEIKHZADEH M, et al. A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills[J]. Journal of Environmental Management, 2017, 202: 29-37. http://www.xueshufan.com/publication/2735042728

    [12]

    PAUL S, SARKAR D. Performance evaluation of natural fiber reinforced Laterite soil for road pavement construction[J]. Materials Today: Proceedings, 2022, 62: 1246-1251. doi: 10.1016/j.matpr.2022.04.534

    [13]

    BU F, LIU J, MEI H, et al. Cracking behavior of sisal fiber-reinforced clayey soil under wetting-drying cycles[J]. Soil and Tillage Research, 2023, 227: 105596. doi: 10.1016/j.still.2022.105596

    [14] 丁选明, 方华强, 刘汉龙, 等. 纤维改性珊瑚泥裂隙动态演化规律试验研究[J]. 岩土工程学报, 2023, 45(9): 1801-1812. doi: 10.11779/CJGE20220653

    DING Xuanming, FANG Huaqiang, LIU Hanlong, et al. Dynamic evolution laws of desiccation cracking of fiber-improved coral silt[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1801-1812. (in Chinese) doi: 10.11779/CJGE20220653

  • 期刊类型引用(27)

    1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 . 百度学术
    2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 . 百度学术
    3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 . 百度学术
    4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 . 百度学术
    5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 . 百度学术
    6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
    7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 . 百度学术
    8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 . 百度学术
    9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 . 百度学术
    10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 . 百度学术
    11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
    12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 . 百度学术
    13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 . 百度学术
    14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 . 百度学术
    15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 . 百度学术
    16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
    17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 . 百度学术
    18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 . 百度学术
    19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 . 百度学术
    20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 . 百度学术
    21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 . 百度学术
    22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 . 百度学术
    23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 . 百度学术
    24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 . 百度学术
    25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 . 百度学术
    26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
    27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 . 百度学术

    其他类型引用(47)

图(7)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 74
出版历程
  • 收稿日期:  2023-07-04
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回