• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术

汪小刚, 陈益峰, 卢波, 王玉杰, 徐卫亚, 杨强, 张希巍

汪小刚, 陈益峰, 卢波, 王玉杰, 徐卫亚, 杨强, 张希巍. 枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术[J]. 岩土工程学报, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004
引用本文: 汪小刚, 陈益峰, 卢波, 王玉杰, 徐卫亚, 杨强, 张希巍. 枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术[J]. 岩土工程学报, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004
WANG Xiao-gang, CHEN Yi-feng, LU Bo, WANG Yu-jie, XU Wei-ya, YANG Qiang, ZHANG Xi-wei. Control technology and interaction mechanism between important structures of multi-purpose projects and geological environment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004
Citation: WANG Xiao-gang, CHEN Yi-feng, LU Bo, WANG Yu-jie, XU Wei-ya, YANG Qiang, ZHANG Xi-wei. Control technology and interaction mechanism between important structures of multi-purpose projects and geological environment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004

枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术  English Version

基金项目: 

国家重点研发计划项目 2018YFC1508500

详细信息
    作者简介:

    汪小刚(1965—)男,工学博士,正高级工程师(二级),博士生导师,全国水利系统十大青年科技英才,百千万人才工程国家级人选,国家有突出贡献的中青年专家,享受政府特殊津贴专家,现任中国水利水电科学研究院副院长,兼任中国大坝学会副理事长、中国水力发电工程学会副理事长及《岩土工程学报》副主编。工作35年以来,主持或参与了国家“八五”至“十三五”科技攻关、国家“973”、国家自然科学基金、水利部重点科研、水利部948项目等50余项科研项目;负责或参与完成了三峡、小浪底、龙滩、李家峡、锦屏和小湾等几十个国家重大水电工程关键技术问题的技术咨询工作。紧密结合水利水电工程建设重大需求,围绕岩体工程力学参数取值方法、高边坡稳定极限分析理论、预应力锚固机理及新型锚固结构型式、复杂条件下高土石坝筑坝技术、大型输水隧洞新型衬砌结构型式、水利水电工程安全预警预报方法和技术等方面进行了深入系统的研究,取得的多项创新性成果已在工程建设中得到了广泛应用,取得了显著的社会经济效益,为我国水利水电工程发展做出了突出贡献。获国家科技进步一等奖、二等奖各1项、省部级科技进步特等奖2项、一等奖6项、二等奖8项,国家发明专利30余项,发表论文130余篇,主编和参编学术专著10余部。E-mail:wangxg@iwhr.com

    通讯作者:

    王玉杰, E-mail: wangyj@iwhr.com

  • 中图分类号: TU43

Control technology and interaction mechanism between important structures of multi-purpose projects and geological environment

  • 摘要: 紧密结合中国重大水利水电工程长期安全调控的迫切需求,深入研究开挖卸荷、水库蓄水、水位交变、泄洪雨雾及库区气候变化条件下,库区及枢纽区渗流场、应力场和参数场(岩土力学性能参数、加固系统功能指标)的动态演化和耦合作用机理,建立并形成了地质环境变化趋势预测的理论和方法;系统研究不同构筑物(库岸边坡、高坝岩基和大型地下洞室群)与地质环境的互馈作用机制,完善并发展了基于地质环境演化的构筑物工作性状动态分析方法和调控技术,研发了与变化环境相适应的加固系统(特别是锚固体系)长效延寿成套装备与工法,并在实际工程中得到示范应用。
    Abstract: Closely inline with the urgent needs of long-term safety regulation of major water conservancy and hydropower projects in China, the dynamic evolution and coupling mechanism of seepage field, stress field and parameter field (geotechnical mechanical performance parameters and functional indexes of reinforcement system) in the reservoir area and project area are deeply studied under the conditions of excavation and unloading, reservoir water storage, water level alternation, flood discharge rain and fog and climate change in the reservoir area, and the theory and method for predicting the change trend of geological environment are established and formed. The mutual feeding mechanism between different structures (reservoir bank slope, high dam rock foundation and large underground cavern group) and the geological environment is systematically studied, the dynamic analysis method and regulation technology of working properties of structures are improved and developed based on the evolution of geological environment, and the complete set of long-term life extension equipment and construction method of reinforcement system (especially anchorage system) adapted to the changing environment is developed, and it is demonstrated and applied in practical engineering.
  • 污泥往往具有极高的含水率,需要对污泥进行脱水,以方便后续处理[1]。然而污泥胞外聚合物(EPS)的成分极其复杂,使污泥中的水分很难被去除[2]。为了降低污泥的含水率,国内外已进行了很多新技术的研究,包括微波辐射、热水解、超声波以及新型絮凝剂的开发等[3-6]。超声波处理是改善污泥脱水性能的有效处理方法之一[7-8]。污泥液相在超声波的作用下产生大量的空化气泡及产生强大的剪切力和瞬时高温,能够有效地裂解胞外聚合物(EPS),使大量结合水释放[9-10]。超声波作用使絮体颗粒尺寸变小,破坏菌胶团的结构,使其间所含结合水转化为自由水[11]。超声波还可以杀灭污泥中的病毒、细菌和其他有害物质,提高重金属的浸出率和回收率等[12-13]。超声波处理污泥改善脱水性能受到超声波频率、超声时间、声能密度、pH值、作用方式、耦合方法等因素的影响[14]。目前,超声波技术仍有一些局限性,超声波处理污泥脱水的一些机理尚未能够充分认识[15]。本文拟在超声波作用时间对污泥脱水性能影响方面进行研究,以达到最佳处理效果。从而为在实际工程应用中更好地利用超声波的优势提供理论参考。

    试验污泥选用当地城镇污水处理厂二沉池活性污泥,为保证各组试验初始条件的一致性,采用同一批污泥,测试初始含水率为97.13%,密度为1.026 g/cm3。原污泥基本性质如表 1所示,粒径分布采用激光粒度分析仪测定,如图 1所示。

    表  1  原污泥基本性质
    Table  1.  Characteristics of raw sewage sludge
    含水率/% pH SV30/% 密度/cm3 污泥温度/℃
    97.13 8.87 54 1.026 24.1 ± 2
    SRF/(1013·m-1·kg-1) d10/μm d50/μm d90/μm Mean/μm
    4.76 13.680 49.129 172.116 73.109
    注:SV30表示污泥沉降比;SRF表示污泥比阻;d10表示颗粒累积分布为10%的污泥粒径;d50为中值粒径,表示颗粒累积分布为50%的污泥粒径;d90表示“颗粒累积分布为90%的污泥粒径;Mean表示粒径加权平均值,即平均污泥粒径。
    下载: 导出CSV 
    | 显示表格
    图  1  原污泥粒径分布
    Figure  1.  Particle-size distribution of raw sludge

    本试验仪器有SM-900A超声波细胞破碎仪,LT2200E激光粒度分析仪,PXBJ-287L型便携式离子计,JJ-4B六联异步电动搅拌器,CS-101-2电热干燥箱,Coxem EM-30 PLUS台式扫描电子显微镜,CR21N高速冷冻离心机等。

    取原污泥5盒各300 mL,设定超声波频率20 kHz,声能密度9.8 W,调节超声波作用时间为5,15,30,45,60 s。待每组污泥试样超声处理完成后,检测污泥的pH值、粒径分布。试样放入离心机脱水,检测离心脱水后的污泥泥饼含水率,确定超声波调理污泥的最优作用时间。取适量污泥,进行扫描电镜试验,分析污泥的微观结构。

    (1)污泥含水率

    污泥加入离心机试样瓶,离心机必须同时放置4个离心试样瓶且4个试样瓶各自的质量差值小于4 g,底部用滤布进行过滤,污泥经6000 r/min,5 min离心作用后检测滤饼含水率。污泥含水率的测定采用热干燥法,离心机脱水后的泥饼放入恒温烘箱中烘至恒重,取平均值。

    (2)污泥pH值

    采用便携式离子计的pH电极进行测量。

    (3)污泥粒径

    用去离子水将污泥样品稀释至浓度为15 mg/L的混合液,采用激光粒度分析仪测定污泥粒径分布,每个样品测定3次后取平均值。

    (4)污泥微观结构

    污泥样本在烘箱里烘干后,采用扫描电子显微镜(SEM)对污泥样本进行分析,放大倍数分别为200,500,1000,2000,5000倍。

    污泥含水率为污泥中水的质量与污泥总质量之比。超声波作用后的污泥经离心机脱水后的泥饼含水率随超声波作用时间的变化曲线,如图 2所示。

    图  2  含水率随超声时间的变化
    Figure  2.  Change in water content with ultrasonic time

    图 2中曲线可知,当超声波作用时间小于30 s,污泥泥饼含水率随超声波作用时间的增加逐渐降低,表明污泥脱水性能得到改善。经30 s的处理时间后降至最低值。当超声波作用时间大于30 s,污泥泥饼含水率反而升高,显示污泥脱水性能逐渐恶化。这意味着额外延长超声时间,处理效果反而变差。长时间超声波作用使污泥絮体过分破碎,过度裂解了污泥絮体和微生物细胞结构,释放出的核酸、蛋白质、脂肪微粒和无机物微粒等微小聚合物,增加了污泥的黏度,致使污泥又重新吸附水分,结合水增加,脱水性能恶化。上述污泥泥饼含水率变化规律说明超声波作用时间存在一个最优值,作用时间过短和过长均不利于污泥脱水性能的提高。

    污泥pH值随超声波作用时间的变化曲线如图 3所示。

    图  3  污泥pH值随超声时间的变化
    Figure  3.  Change in sludge pH value with ultrasound time

    图 3中曲线可知,随着超声波作用时间的延长,超声处理后的污泥pH值稍有下降,但下降趋势不明显。由于污泥絮体和细胞结构被破坏,在释放细胞内部水分的同时,也释放内部的有机物质,包含有机酸或碳酸类物质,该过程改变了污泥的化学特性,使pH降低。

    超声波作用时间对污泥颗粒粒度分布的影响,如图 4所示。

    图  4  污泥颗粒粒径分布曲线
    Figure  4.  Distribution curves of particle size of sludge

    图 4曲线可以看出,污泥颗粒粒径主要分布在10~200 μm范围内,随着超声波作用时间延长,污泥颗粒粒径逐渐变小。究其原因,由于污泥颗粒稳固的细胞结构,短时间的超声波处理可能达不到理想的能量输入,这部分能量不足以破坏大部分的细胞结构,只能破坏结合力较小的污泥絮体结构。逐渐延长超声波作用时间,能量输入不断增强,越来越多的细胞结构无法承受空化气泡崩溃时产生的巨大压力而被破坏,絮体断裂,颗粒粒径变小。继续延长超声波作用时间,能量持续输入,完全破坏了污泥絮体及细胞结构。长时间超声波作用使污泥絮体过分破碎,表现为污泥平均颗粒粒径进一步减小。

    图 5为原污泥及超声波作用时间5,15,30,45,60 s处理后污泥的SEM图。

    图  5  污泥SEM图
    Figure  5.  SEM images of sludge

    图 5(a)为原污泥微观结构,从图 5(a)中可以看出,原污泥絮体结构较为完整,较多圆球状颗粒堆积胶黏在一起,微生物细胞极少裸露,被污泥絮体紧紧包裹,污泥絮体之间紧密结合,表面相对光滑完整,结构致密。图 5(b)为超声波作用时间5 s处理后的污泥微观结构,可见少量完整细胞裸露在外,污泥絮体变得松散;图 5(c)为超声波作用时间15 s处理后的污泥微观结构,可见较多完整细胞裸露在外,污泥絮体松散,可见大块状絮体聚集体;图 5(d)为超声波作用时间30 s处理后的污泥微观结构,可以看出污泥絮体更加松散,污泥颗粒粒径变小,污泥絮体结构遭到明显破坏,暴露的细胞数显著增加,污泥絮体解体,细胞壁破裂;图 5(e)为作用时间45 s处理后的污泥微观结构,可见,细胞壁凹陷破碎明显,污泥絮体重新聚集组合。图 5(e)为作用时间60 s处理后的污泥微观结构,细胞壁破碎严重,外层胞外聚合物EPS和微生物细胞破裂失活,污泥无机颗粒与微生物细胞碎片堆积胶结在一起,污泥重新变得很致密。

    本文从污泥离心脱水含水率、pH值、颗粒粒径分布、微观结构等方面研究了超声波作用时间对污泥脱水性能的影响,得到以下3点结论。

    (1)原污泥具有稳定的胶体系统,大量结合水被污泥絮体紧紧包裹无法释放,导致污泥脱水性能很差。超声波通过声空化作用和水力剪切作用裂解污泥絮体,将难以去除的结合水释放出来,改善污泥脱水性能。

    (2)由于超声波作用,污泥在释放胞内结合水的同时,也将大量的有机酸或碳酸类物质的有机物质释放到污泥浆液中,使污泥pH值降低。

    (3)无限延长超声时间,污泥脱水性能会变差。采用超声改善污泥脱水性能,应选择最优的超声波作用时间,超声波作用时间过短和过长均不利于污泥脱水,在实际应用时应引起重视。

  • 图  1   课题与科学问题及课题之间的逻辑关系

    Figure  1.   Corresponding relationship between research subjects and scientific problems

    图  2   岩石水岩耦合试验

    Figure  2.   Water-rock interaction test of rock samples

    图  3   高渗压条件下岩石三轴蠕变试验

    Figure  3.   Triaxial creep test of rock under high water pressure

    图  4   结构面水岩耦合试验

    Figure  4.   Water-rock interaction tests on rock discontinuities

    图  5   逐级增加水压结构面剪切位移时间曲线

    Figure  5.   Variation of shear displacement with time by increasing the water pressure step by step

    图  6   结构面水理化特性试验装置和结果

    Figure  6.   Test devices and results for hydrophysicochemical properties of rock discontinuities

    图  7   裂隙岩体现场水岩耦合试验

    Figure  7.   Water-rock interaction tests on joint rock in field

    图  8   锚索现场开挖检测

    Figure  8.   Anchor excavation at several projects

    图  9   室内拟环境加速腐蚀试验装置

    Figure  9.   Simulated environment accelerated corrosion test devices in laboratory

    图  10   锚索加速腐蚀试验结果

    Figure  10.   Accelerated corrosion test results for anchor samples

    图  11   内外锚头防腐结构

    Figure  11.   Corrosion preventation structures for inner and outer anchor heads

    图  12   压胀式楔形内锚头结构及受力特征

    Figure  12.   Structure and mechanical characteristics of wedge anchor head

    图  13   新型超限荷载变形调整预应力锚索内锚头

    Figure  13.   New type of anchor head for deformation adjustment under excessive load

    图  14   新型应力监测结构设计及试验验证

    Figure  14.   Design and test verification of new stress monitoring structure

    图  15   西南深切峡谷区岩体渗透系数随埋深分布规律

    Figure  15.   Variation of hydraulic conductivity of rock masses with depth in deep-incised valleys, Southwest China

    图  16   溪洛渡水电站近坝区玄武岩渗透系数的演化规律

    Figure  16.   Variation of hydraulic conductivity for near-bank basaltic rocks at Xiluodu Hydropower Station

    图  17   地下水分层现象与脉状地下水运动特征

    Figure  17.   Multiple water tables and groundwater flow behavior along backbone structures

    图  18   白鹤滩水电站坝址区水文地质环境演化特征

    Figure  18.   Variation of hydrogeological environment at the site of Baihetan Hydropower Station

    图  19   预测饱和裂隙岩体有效应力系数的经验模型

    Figure  19.   Empirical model for predicting effective stress coefficient of saturated fractured rock mass

    图  20   渗流–应力耦合损伤力学模型

    Figure  20.   Micromechanical damage model for hydro-mechanical coupling

    图  21   岩体渗流–应力–参数耦合数值模拟方法框图

    Figure  21.   Diagram of seepage-stress-parameter coupled numerical simulation method for rock mass

    图  22   溪洛渡水电站三维渗流场动态反馈分析

    Figure  22.   Dynamic feedback analysis of 3D seepage field of Xiluodu Hydropower Station

    图  23   库岸边坡渗流应力耦合损伤力学模型

    Figure  23.   Micromechanical damage model for hydro-mechanical coupling of reservoir bank

    图  24   多尺度分析计算流程

    Figure  24.   Flow chart of multiscale analysis

    图  25   基于多尺度和传统强度折减方法结果对比

    Figure  25.   Comparison of results by multi-scale and traditional strength reduction methods

    图  26   溪洛渡坝肩边坡变形机理分析

    Figure  26.   Analysis of deformation mechanism of valley amplitude of Xiluodu

    图  27   锦屏一级坝基变形

    Figure  27.   Deformations of dam foundation of Jinping No.1

    图  28   溪洛渡坝基变形

    Figure  28.   Deformations of dam foundation of Xiluodu

    图  29   两种变形模式的模拟方法

    Figure  29.   Simulation methods for two deformation modes

    图  30   白鹤滩拱坝上游坝面屈服区图

    Figure  30.   Yield zone map of upstream of Baihetan Arch Dam

    图  31   不平衡力与声发射和拱坝开裂破坏的关系

    Figure  31.   Relationship among unbalanced force, acoustic emission and cracking failure of arch dam

    图  32   孟底沟拱坝下游坝面屈服区图

    Figure  32.   Yield zone map of downstream of Mengdigou Arch Dam

    图  33   白鹤滩拱坝下游坝面屈服区图

    Figure  33.   Yield zone map of downstream of Baihetan Arch Dam

    图  34   地下洞室群锚杆受力随时间的变化过程

    Figure  34.   Variation of bolt stress with time in underground caverns

    图  35   地下洞室群围岩变形与锚杆受力变化规律

    Figure  35.   Variation of bolt stress and rock deformation in underground caverns

    图  36   高压引水隧洞工程实际运行工作性状模拟分析

    Figure  36.   Simulation analysis of actual operation and working characteristics of high-pressure diversion tunnel

    图  37   高内外水作用下自适应衬砌结构图

    Figure  37.   Diagram of an adaptive lining structure under high internal and external water pressures

    图  38   高内外水自适应衬砌模型试验

    Figure  38.   Model tests on adaptive lining structure under high internal and external water pressures

    表  1   锚头结构暴露分级标准

    Table  1   Exposure classification of anchor head

    等级 分级标准
    A 包裹层完整
    B 保护帽外露
    C 锚具和垫板有1项外露
    D 锚具和垫板有2项外露
    下载: 导出CSV

    表  2   锚头结构腐蚀分级标准

    Table  2   Classification of corrosion degree of anchor head

    等级 分级标准
    0 没有锈蚀,或锈蚀情况未知
    1 轻微锈蚀,锈斑部分覆盖表面
    2 明显锈蚀,锈斑全面覆盖表面
    3 严重锈蚀,有锈斑,表面因锈蚀不平整
    4 严重锈蚀,锈蚀深入基体,呈层状或有剥落现象
    下载: 导出CSV

    表  3   预应力锚索寿命预测模型计算结果

    Table  3   Calculated results by life prediction model for prestressed anchor

    实际调研情况和计算结果 失效年限/a
    边坡加固工程的锚索失效年限 12.0
    模型计算结果 12.0(L=8 m)
    11.3(L=24 m)
    下载: 导出CSV
  • [1]

    FENG X T, ZHAO J, ZHANG X W, et al. A novel true triaxial apparatus for studying the time-dependent behaviour of hard rocks under high stress[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2653–2667. doi: 10.1007/s00603-018-1516-z

    [2]

    WU A Q, FAN L, FU X, et al. Design and application of hydro-mechanical coupling test system for simulating rock masses in high dam reservoir operations[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140: 104638. doi: 10.1016/j.ijrmms.2021.104638

    [3] 赵志宏. 岩石裂隙水–岩作用机制与力学行为研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3063–3073. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2007.htm

    ZHAO Zhi-hong. Study on water-rock interaction mechanisms and mechanical behaviors of single rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3063–3073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2007.htm

    [4]

    DOU Z H, GAO T Y, ZHAO Z H, et al. Effect of immersion duration on shear behavior of granite fractures[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4809–4823. doi: 10.1007/s00603-021-02534-8

    [5]

    DOU Z H, GAO T Y, ZHAO Z H, et al. The role of water lubrication in critical state fault slip[J]. Engineering Geology, 2020, 271: 105606. doi: 10.1016/j.enggeo.2020.105606

    [6]

    SHANG D L, ZHAO Z H, DOU Z H, et al. Shear behaviors of granite fractures immersed in chemical solutions[J]. Engineering Geology, 2020, 279: 105869. doi: 10.1016/j.enggeo.2020.105869

    [7]

    FAN L, YU M W, WU A Q, et al. Study on the deformation characteristics of fractured basalt under coupling of three-dimensional stress and water pressure cycling[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(2): 022039. doi: 10.1088/1755-1315/861/2/022039

    [8]

    FAN L, YU M W, WU A Q, et al. Developing an in situ, hydromechanical coupling, true triaxial rock compression tester and investigating the deformation patterns of reservoir bank slopes[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2021: qjegh2021-43.

    [9]

    WANG Y J, SUN X S, REN A W. Investigations of rock anchor corrosion and its influence factors by exhumations in four typical field sites[J]. Engineering Failure Analysis, 2019, 101: 357–382. doi: 10.1016/j.engfailanal.2019.03.022

    [10]

    SUN X S, WANG Y J, YIN T, et al. New system for investigating the corrosion of existing rock anchors[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(7): 072117. doi: 10.1088/1755-1315/861/7/072117

    [11] 王玉杰, 尹韬, 孙兴松, 等. 丰满老坝加固预应力锚索服役近30年后性能评价研究[J]. 岩石力学与工程学报, 2022, 41(1): 62–69. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201005.htm

    WANG Yu-jie, YIN Tao, SUN Xing-song, et al. Performance evaluation of prestressed anchors embedded in old Fengman Dam after nearly 30 years service[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 62–69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201005.htm

    [12]

    YIN T, SUN X S, WANG Y J, et al. Corrosion investigation of rock anchors served over 10 years in underground powerhouse of a hydropower station[J]. Advances in Materials Science and Engineering, 2022: 4905010.

    [13]

    WANG Y J, YIN T, SUN X S, et al. Review of corrosion test methods of prestressed anchor[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(2): 022060. doi: 10.1088/1755-1315/861/2/022060

    [14]

    YIN T, SUN X S, WANG Y J, et al. Corrosion characteristics of anchor cables in electrolytic corrosion test and the applicability of the test method in study of anchor cable corrosion[J]. Advances in Civil Engineering, 2021, 2021: 6695288.

    [15] 孙彦鹏. 楔形压胀式内锚头作用机理及应用研究[D]. 邯郸: 河北工程大学, 2020.

    SUN Yan-peng. Study on the Action Mechanism and Application of Wedge-Shaped Expansion Type Internal Anchor Head[D]. Handan: Hebei University of Engineering, 2020. (in Chinese)

    [16] 孙彦鹏, 凌永玉, 林兴超, 等. 新型预应力锚索内部监测结构试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 226–230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2040.htm

    SUN Yan-peng, LING Yong-yu, LIN Xing-chao, et al. Experimental study on internal monitoring structure of a new prestressed anchor cable[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 226–230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2040.htm

    [17]

    CHEN Y F, LING X M, LIU M M, et al. Statistical distribution of hydraulic conductivity of rocks in deep-incised valleys, Southwest China[J]. Journal of Hydrology, 2018, 566: 216–226. doi: 10.1016/j.jhydrol.2018.09.016

    [18] 陈益峰. 水利工程渗流分析理论与实践[M]. 北京: 科学出版社, 2022.

    CHEN Yi-feng. Seepage Analysis in Hydraulic Engineering: Theory and Practice[M]. Beijing: Science Press, 2022 (in Chinese)

    [19]

    CHEN Y F, ZENG J, SHI H T, et al. Variation in hydraulic conductivity of fractured rocks at a dam foundation during operation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(2): 351–367. doi: 10.1016/j.jrmge.2020.09.008

    [20]

    JIA C J, XU W Y, WANG S S, et al. Experimental analysis and modeling of the mechanical behavior of breccia lava in the dam foundation of the Baihetan Hydropower Project[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(4): 2681–2695. doi: 10.1007/s10064-018-1228-3

    [21]

    WANG H L, XU W Y, JIA C J, et al. Experimental research on permeability evolution with microcrack development in sandstone under different fluid pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(6): 04016014. doi: 10.1061/(ASCE)GT.1943-5606.0001462

    [22]

    MENG Q X, WANG H L, XU W Y, et al. Multiscale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modeling[J]. Computers and Geotechnics, 2019, 115: 103164. doi: 10.1016/j.compgeo.2019.103164

    [23]

    SHI H J, XU W Y, YANG L L, et al. Investigation of influencing factors for valley deformation of high arch dam using machine learning[J]. European Journal of Environmental and Civil Engineering, 2020: 1–12.

    [24]

    SUN M C, XU W Y, WANG H L, et al. A novel hybrid intelligent prediction model for valley deformation: a case study in Xiluodu Reservoir region, China[J]. Computers, Materials & Continua, 2020, 66(1): 1057–1074.

    [25]

    LI B, XU J R, XU W Y, et al. Mechanism of valley narrowing deformation during reservoir filling of a high arch dam[J]. European Journal of Environmental and Civil Engineering, 2020: 1–11.

    [26]

    WANG X W, XU J R, XUE L J, et al. Study on deformation of abutment and the influence on high arch dam during impoundment[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(7): 072068. doi: 10.1088/1755-1315/861/7/072068

    [27] 钟大宁. 高拱坝谷幅变形机制及谷幅变形对大坝的影响研究[D]. 北京: 清华大学, 2019.

    ZHONG Da-ning. Study on the Mechanism of Valley Width Deformation and Its Effects on the Arch Dam[D]. Beijing: Tsinghua University, 2019 (in Chinese)

    [28] 杨强, 王守光, 李超毅, 等. 岩体结构变形破坏的内在驱动力–不平衡力[J]. 工程地质学报, 2020, 28(2): 202–210. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002002.htm

    YANG Qiang, WANG Shou-guang, LI Chao-yi, et al. Internal driving force of deformation and failure of rock mass structure-unbalanced force[J]. Journal of Engineering Geology, 2020, 28(2): 202–210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002002.htm

    [29]

    WANG S G., LIU Y R., ZHOU H W., et al. Experimental study on failure process of arch dam based on acoustic emission technique[J]. Engineering Failure Analysis, 2019, 97: 128–144. doi: 10.1016/j.engfailanal.2019.01.013

    [30]

    TAO Z F, LIU Y R, YANG Q, et al. Study on the nonlinear deformation and failure mechanism of a high arch dam and foundation based on geomechanical model test[J]. Engineering Structures, 2020, 207: 110287. doi: 10.1016/j.engstruct.2020.110287

    [31]

    WANG X G., LIU L P., FU R Z., et al. Newly developed pressure adaptable concrete lining for high pressure hydraulic tunnels[J]. Tunnelling and Underground Space Technology, 2020, 105: 103570. doi: 10.1016/j.tust.2020.103570

    [32] 刘立鹏, 汪小刚, 段庆伟, 等. 高压富水地层水工隧洞衬砌外水压力确定与应对措施[J/OL]. 岩土工程学报: 1-9[2022-03-05]. http://kns.cnki.net/kcms/detail/32.1124.Tu.20211228.1528.011.html, 2022.

    LIU Li-peng, WANG Xiao-gang, DUAN Qing-wei, et al. Methods to cope with external water pressure of hydraulic tunnel lining in high-pressure groundwater-rich stratum[J/OL]. Chinese Journal of Geotechnical Engineering: 1-9[2022-03-05]. http://kns.cnki.net/kcms/detail/32.1124.Tu.20211228.1528.011.html, 2022. (in Chinese)

  • 期刊类型引用(2)

    1. 原媛,刘丝丝,崔勇涛,赖智龙,廖德祥. 生物酶用于河湖底泥脱水减量调理的对比研究. 水资源与水工程学报. 2025(01): 154-162 . 百度学术
    2. 汤连生,陈洋,曾显帅,程子华,丁威涯. 聚合氯化铝预处理污泥联合脱水有效性及机理. 中山大学学报(自然科学版)(中英文). 2024(04): 37-46 . 百度学术

    其他类型引用(5)

图(38)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回