Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

路基模量沿深度非均匀分布沥青路面动力解析解

范海山, 张军辉, 郑健龙

范海山, 张军辉, 郑健龙. 路基模量沿深度非均匀分布沥青路面动力解析解[J]. 岩土工程学报, 2022, 44(6): 1016-1026. DOI: 10.11779/CJGE202206005
引用本文: 范海山, 张军辉, 郑健龙. 路基模量沿深度非均匀分布沥青路面动力解析解[J]. 岩土工程学报, 2022, 44(6): 1016-1026. DOI: 10.11779/CJGE202206005
FAN Hai-shan, ZHANG Jun-hui, ZHENG Jian-long. Analytical solution for dynamic response of asphalt pavement with subgrade modulus varying with depth[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1016-1026. DOI: 10.11779/CJGE202206005
Citation: FAN Hai-shan, ZHANG Jun-hui, ZHENG Jian-long. Analytical solution for dynamic response of asphalt pavement with subgrade modulus varying with depth[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1016-1026. DOI: 10.11779/CJGE202206005

路基模量沿深度非均匀分布沥青路面动力解析解  English Version

基金项目: 

国家重大科研仪器设备研制项目 51927814

国家杰出青年科学基金项目 52025085

国家自然科学基金面上项目 51878078

详细信息
    作者简介:

    范海山(1996—),男,湖南长沙人,博士研究生,主要从事路面力学、道路无损检测方面的研究。E-mail: fanhaishan@stu.csust.edu.cn

    通讯作者:

    张军辉, E-mail: zjhseu@csust.edu.cn

  • 中图分类号: TU416

Analytical solution for dynamic response of asphalt pavement with subgrade modulus varying with depth

  • 摘要: 推导了落锤式弯沉仪(FWD)荷载作用下考虑路面结构黏弹性、横观各向同性、层间连续条件以及路基模量沿深度方向非均匀分布的沥青路面动力响应解析解。首先,在考虑横观各向同性轴对称动力基本方程基础上,借助Hankel-Laplace积分变换建立了路面结构部分的常系数常微分方程组以及路基结构部分的变系数常微分方程组;然后,应用Frobenius法以及刚度矩阵法获得了沥青路面动力响应解析解,并编制数值计算程序;最后,结合ABAQUS有限元结果以及文献对比验证了解析解的可靠性,并就路面结构以及路基结构参数进行讨论。结果表明,路面结构中的层间接触条件和横观各向同性能对弯沉产生显著影响,同时路基模量沿深度的非均匀分布对弯沉的影响也不容忽视,建议在实际的FWD道路检测以及路面力学分析中给予充分考虑。
    Abstract: The analytical solution for the dynamic response of asphalt pavement under falling weight deflectometer (FWD) load is obtained considering the viscoelasticity, transverse isotropy, interlayer contact and non-uniform distribution of subgrade modulus along depth. Firstly, based on the transversely isotropic axisymmetric dynamic equations, the constant coefficient ordinary differential equations for pavement structure and the variable coefficient ordinary differential equations for subgrade are established through the Hankel-Laplace transform. Then, combined with the Frobenius method and the stiffness matrix method, the analytical solution of dynamic response for the asphalt pavement is obtained, and the numerical program is also compiled. Then, the reliability of analytical solution is verified by comparison and the results of finite element method. Finally, the influences of interlayer condition, modulus ratio and distribution of subgrade modulus on the road deflection are analyzed. The results show that the interlayer contact and transverse isotropy in the pavement structure have a significant impact on the road deflection. The influences of the subgrade modulus distribution along depth also cannot be ignored. It is suggested that the above characteristics of pavement structure and subgrade should be fully considered in the FWD tests and mechanical analysis of the pavement.
  • 在水利工程建设与湖泊、河道的清淤疏浚过程中会产生大量的高含水率疏浚淤泥。在工程上因其力学性质差难以直接利用,通常进行抛泥处理,造成大量的资源浪费和严重的环境污染。水泥固化法处理高含水率淤泥,在填海工程中被大量使用[1]。在水泥固化土的研究中,有学者就水泥固化土强度影响参数方面展开了研究,也有学者为提高水泥土材料的力学特性,研究了掺入其它材料的影响[2-4]

    另一方面,中国每年产生的废弃砖块约占建筑垃圾总量的30%~50%。关于废砖细骨料再生研究中,Letelier等[5]利用再生骨料和废砖粉作为水泥替代品,研究了结构混凝土的力学性能。Kumar等[6]利用废砖细骨料、混凝土细骨料和pozzol烷材料制备砌块,测试了砌块养护28 d后湿压强度、吸水率和吸湿率等特性。中国目前仍存在建筑垃圾排放量大,回收利用率低等问题[7]

    在疏浚土等不良土的处理方法中,还可掺混不同粒径的砂土,通过改变粒径级配达到改善不良土力学特性的目的[8]。基于此,本文在传统水泥固化土方法基础上提出用水泥-废砖细骨料双掺固化处理高含水率黏土的方法,通过测定不同龄期和不同配合比试样的无侧限抗压强度,分析了双掺固化土的应力-应变关系、抗压强度-破坏应变关系及废砖细骨料的掺入对强度的影响。

    (1)通过预试验确定本试验所用细骨料的粒径范围为2~5 mm,密度1.306 g/cm3,吸水率为10.57%。

    (2)所取原状土的物理力学性质指标见表1,通过加入水使其达到本文所设计的含水率72.4%。

    表  1  黏土的物理力学性质指标
    Table  1.  Physical and mechanical properties of clay
    含水率/%孔隙比液限/%塑限/%液性指数塑性指数
    32.060.39755.1115.110.4240.00
    下载: 导出CSV 
    | 显示表格

    (3)采用工程上常用的普通硅酸盐水泥,即P.O 42.5R水泥。

    考虑废砖细骨料掺量分别为0%,8%,10%和12%,水泥掺量分别为6%,8%和10%(均为黏土干质量的百分比)等多种情况,设置7 d和28 d两种养护龄期。每组配合比条件下分别制作3个压缩试样,测定其无侧限抗压强度。试样的制备步骤如下:

    (1)混合底泥进行搅拌。加入计算所需的相应固化剂和细骨料,使用搅拌器匀速搅拌5 min制备一定含水率的黏土-水泥-废砖细骨料混合物,搅拌均匀后制成混合泥浆。

    (2)开展试样制作。为方便后期脱模,在装入混合料前,在模具(直径为3.91 cm,高度为8 cm)内壁均匀涂上一层凡士林。将制备好的混合泥浆,分3次延模具壁一侧缓缓滑入,一次倒入1/3模具容积,每次倒入后作一段时间振捣,使小气泡从表面破出,避免内部气泡间隙对试样强度的影响。灌制满后,用刮刀进行刮平,铺垫保鲜膜后封盖。

    (3)开展试样养护。将试样密封后置于充满水的水箱中,并放置在标准养护室(20±3℃,湿度>95%)内,养护至设计龄期。

    图1为废砖细骨料掺量与无侧限抗压强度在水泥掺量在10%条件下的关系曲线图。由图1可知:当废砖细骨料掺量从10%增加到12%,试样强度均有了较大幅度的提升;但养护龄期为28 d增长率比7 d时略小。分析认为:当养护龄期达到28 d时,近似认为废砖细骨料中的水分达到饱和,此时细骨料的湿润度与周围水泥土湿润度相当,根据再生废砖骨料的吸水返水特性[9]分析可知,此时细骨料的返水能力比吸水能力强,双掺固化土中的水分会有所增加,故出现龄期为28 d的水泥-废砖细骨料双掺固化土的强度增长速率较7 d变缓的现象;在相同废砖细骨料掺量情况下,双掺固化土抗压强度随试样养护龄期的增加而增大,且28 d无侧限抗压强度相较7 d无侧限抗压强度平均提升了1.63倍。

    图  1  废砖细骨料掺量对强度的影响
    Figure  1.  Influences of amount of waste brick fine aggregate on strength

    图2为废砖细骨料掺量在10%条件下,水泥掺量与无侧限抗压强度的关系曲线图。由图2可知:当养护龄期为7 d时,试样强度随水泥掺量的增加成线性增长;养护龄期为28 d,当水泥掺量大于8%时,强度增长速率有减小的趋势。分析认为:这一现象与废砖骨料的吸水返水特性有关;在相同水泥掺量情况下,双掺固化土抗压强度随试样养护龄期的增加而增大,且28 d无侧限抗压强度相较7 d无侧限抗压强度平均提升了约1.44倍。

    图  2  水泥掺量对强度的影响
    Figure  2.  Influences of cement content on strength

    通过对两种固化土的强度特性进行对比分析(图3)发现,龄期为7 d的水泥固化土,随水泥掺量的增加成非直线增长,这与郑少辉等[3]分析不同水灰比固化土的强度所得研究结果相近,即当水泥剂量小于16%时无侧限抗压强度随水泥剂量的增加呈非线性增长。在两种养护龄期下,均出现双掺固化土强度的总体增长速率比水泥固化土强度增长速率高的现象。分析可知,再生废砖细骨料具有孔隙率高、吸水性强等特征,能够吸收土体中部分多余水分,且废砖细骨料含量越多吸水性越强,从而有效降低土体含水率,进而随之强化水泥在低含水率下的固化效率,加快了双掺固化土强度的形成。对7 d龄期条件,当水泥剂量大于等于8%时,废砖细骨料的掺入,明显提高了固化土的强度,说明要使废砖细骨料在改善固化土强度方面发挥作用,对水泥掺量存在一个最低剂量要求。

    图  3  废砖颗粒掺入对强度的影响
    Figure  3.  Influences of waste brick particle on strength

    废砖细骨料为颗粒状,在固化土体中可视为游离状态,在制作无侧限抗压试样时,由于分层振捣处理导致废砖颗粒分布不均,形成的受力骨架也有所差异,故测出的强度不一,导致随着龄期和废砖细骨料含量的增长,强度的变异系数明显变大。

    综上所述,在水泥剂量满足最低要求(本文测的最低剂量为8%)的情况下,废砖细骨料掺入和龄期增长都有利于固化土强度的提升;废砖细骨料的掺入,在增大固化土强度的同时也会增大固化土的变异性。

    图4为双掺固化土无侧限抗压强度试验的破坏形态。试样受压破坏后出现多条裂缝,主裂缝不突出不明显,破坏后试样破碎成块状,为塑性剪切破坏。故水泥-废砖细骨料双掺固化土的破坏形态主要表现为塑性剪切破坏。

    图  4  破坏形态
    Figure  4.  Failure modes

    图5为用水泥-废砖细骨料双掺法处理高含水率黏土的固化土应力-应变曲线图。由图可见其破坏应变分布在2.5%~3%,与水泥固化土的破坏应变一般介于0.5%~2%的认识[8, 11-14]有一定的偏差。分析其原因有两点:①由于废砖骨料在试样中成悬浮分布状态,当其掺量较小时,颗粒之间并没有形成骨架;②当骨料的湿润度与周围水泥土湿润度相当时,骨料表现出返水能力比吸水能力强的特性,使土体的水分略微增加所致。

    图  5  双掺固化土试样应力-应变关系
    Figure  5.  Stress-strain relationship of DMSC samples

    图6为双掺固化土破坏应变与抗压强度的关系曲线。由图6可知,破坏应变随着抗压强度增大呈先略微减小后明显增大的趋势,这与其他学者得出的破坏应变随抗压强度增大而减小的试验结果[8, 10-14]有一定的偏差。分析其原因,主要是废砖的掺入使固化土的韧性在一定程度上得到提升。

    图  6  固化土破坏应变与抗压强度的关系
    Figure  6.  Relationship between failure strain and compressive strength of DMSC samples

    (1)废砖细骨料对高含水率水泥固化土的强度有显著的提升效果,且早期强度增长速率比后期快。

    (2)要发挥废砖细骨料的作用,水泥掺量需满足最低剂量8%的要求;掺入废砖细骨料在提高固化土强度的同时,也增加了固化土的变异性。控制变异性可提高其在工程建设上应用的安全可靠性。

    (3)双掺法处理高含水率黏土固化土的破坏形态主要表现为塑性剪切破坏,其破坏应变在2.5%~3%,韧性比一般固化土的韧性好。

  • 图  1   沥青路面力学模型

    Figure  1.   Mechanical model for asphalt pavement

    图  2   Burgers模型

    Figure  2.   Burgers model

    图  3   数值计算收敛研究

    Figure  3.   Researches on convergence of numerical computation

    图  4   有限元与荷载模型

    Figure  4.   Finite element model and load model

    图  5   有限元计算结果对比

    Figure  5.   Comparison of calculated results

    图  6   文献对比验证

    Figure  6.   Comparative verification

    图  7   滑移系数αx影响

    Figure  7.   Influences of slip coefficient on deflection

    图  8   模量比ne影响

    Figure  8.   Influences of modulus ratio on deflection

    图  9   路基变模量参数–弯沉峰值云图(r=0.0 m)

    Figure  9.   Cloud map of non-uniform distribution coefficient and deflection peak of subgrade (r=0.0 m)

    图  10   弯沉盆曲线(?, Ξ影响)

    Figure  10.   Curves of deflection basin under influence of ?, Ξ

    图  11   路基模量比neN影响探究(r=0.0 m)

    Figure  11.   Researches on influence of subgrade modulus ratio neN (r=0.0 m)

    图  12   弯沉盆曲线(路基模量比影响)

    Figure  12.   Curves of deflection basin under influence of subgrade modulus ratio

    表  1   路面结构层材料参数

    Table  1   Material parameters of pavement structure

    层位 垂直模量/MPa ne(Eh/Ev) ?v(?h) 密度/(kg∙m-3) 厚度/m 层间滑移系数αx
    面层 Burgers
    模型
    0.2 0.25 2400 0.18 0.8
    基层 910 0.4 0.30 2300 0.35 0.7
    底基层 350 0.5 0.35 2200 0.20 0.0
    路基 300~
    200e-0.2z
    1.0 0.35 1600
    下载: 导出CSV

    表  2   有限元计算参数取值

    Table  2   Finite element parameters

    计算情况 ne1 (Eh/Ev) α1x α2x α3x 路基模量Ev /MPa
    情况1 1.0 0 0 0 300~200e-0.2z
    情况2 1.0 0.999 0.999 0.0
    注:表格中未说明参数取值均与表 1相同。
    下载: 导出CSV
  • [1]

    BILODEAU J P, DORÉ G. Estimation of tensile strains at the bottom of asphalt concrete layers under wheel loading using deflection basins from falling weight deflectometer tests[J]. Canadian Journal of Civil Engineering, 2012, 39(7): 771–778. doi: 10.1139/l2012-063

    [2] 马宪永, 全蔚闻, 董泽蛟. 横观各向同性黏弹性沥青路面动力响应解析解[J]. 中国公路学报, 2020, 33(10): 135–145. doi: 10.3969/j.issn.1001-7372.2020.10.008

    MA Xian-yong, QUAN Wei-wen, DONG Ze-jiao. Analytical solution for dynamic response of transversely isotropic viscoelastic asphalt pavement[J]. China Journal of Highway and Transport, 2020, 33(10): 135–145. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.008

    [3] 董泽蛟, 全蔚闻, 马宪永, 等. 考虑沥青路面材料参数空间差异性的解析计算及影响分析[J]. 中国公路学报, 2020, 33(10): 91–101. doi: 10.3969/j.issn.1001-7372.2020.10.004

    DONG Ze-jiao, QUAN Wei-wen, MA Xian-yong, et al. Analytical solution and effect analysis of asphalt pavement considering the spatial difference of material parameters[J]. China Journal of Highway and Transport, 2020, 33(10): 91–101. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.004

    [4]

    WANG L B, HOYOS L R, WANG J, et al. Anisotropic properties of asphalt concrete: characterization and implications for pavement design and analysis[J]. Journal of Materials in Civil Engineering, 2005, 17(5): 535–543. doi: 10.1061/(ASCE)0899-1561(2005)17:5(535)

    [5]

    TUTUMLUER E, THOMPSON M R. Anisotropic modeling of granular bases in flexible pavements[J]. Transportation Research Record: Journal of the Transportation Research Board, 1997, 1577(1): 18–26. doi: 10.3141/1577-03

    [6]

    AL-QADI I L, WANG H, TUTUMLUER E. Dynamic analysis of thin asphalt pavements by using cross-anisotropic stress-dependent properties for granular layer[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2154(1): 156–163. doi: 10.3141/2154-16

    [7] 董泽蛟, 刘美丽, 郑好, 等. 考虑横观各向同性特性的沥青路面动力学分析[J]. 中国公路学报, 2012, 25(5): 18–23. doi: 10.3969/j.issn.1001-7372.2012.05.005

    DONG Ze-jiao, LIU Mei-li, ZHENG Hao, et al. Dynamic mechanical analysis of asphalt pavement based on cross-isotropic properties[J]. China Journal of Highway and Transport, 2012, 25(5): 18–23. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.05.005

    [8]

    YAN K Z, XU H B, YOU L Y. Analytical layer-element approach for wave propagation of transversely isotropic pavement[J]. International Journal of Pavement Engineering, 2016, 17(3): 275–282. doi: 10.1080/10298436.2014.993187

    [9]

    AI Z Y, LI Z X, CANG N R. Analytical layer-element solution to axisymmetric dynamic response of transversely isotropic multilayered half-space[J]. Soil Dynamics and Earthquake Engineering, 2014, 60: 22–30. doi: 10.1016/j.soildyn.2014.01.010

    [10]

    AI Z Y, YANG J J, LI H T. General solutions of transversely isotropic multilayered media subjected to rectangular time-harmonic or moving loads[J]. Applied Mathematical Modelling, 2019, 75: 865–891. doi: 10.1016/j.apm.2019.07.015

    [11]

    MOUSA M M, ELSEIFI M A, ELBAGALATI O, et al. Evaluation of interface bonding conditions based on non-destructing testing deflection measurements[J]. Road Materials and Pavement Design, 2019, 20(3): 554–571. doi: 10.1080/14680629.2017.1400995

    [12] 冉武平, 张玉, 李爽. 沥青路面层间接触状态研究进展[J]. 重庆交通大学学报(自然科学版), 2019, 38(8): 45–52. doi: 10.3969/j.issn.1674-0696.2019.08.08

    RAN Wu-ping, ZHANG Yu, LI Shuang. Research progress on interlayer contact state of asphalt pavement[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(8): 45–52. (in Chinese) doi: 10.3969/j.issn.1674-0696.2019.08.08

    [13] 颜可珍, 满建宏, 石挺魏, 等. 考虑层间接触状态的横观各向同性结构动力响应解析解[J]. 湖南大学学报(自然科学版), 2019, 46(11): 97–105. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201911011.htm

    YAN Ke-zhen, MAN Jian-hong, SHI Ting-wei, et al. Analytical solution for dynamic response of transversely isotropic structures considering the state of interlayer contact state[J]. Journal of Hunan University (Natural Sciences), 2019, 46(11): 97–105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201911011.htm

    [14]

    JIANG X, ZENG C, YAO K, et al. Influence of bonding conditions on flexible base asphalt pavement under non-uniform vertical loads[J]. International Journal of Pavement Engineering, 2021, 22(12): 1491–1503. doi: 10.1080/10298436.2019.1697441

    [15]

    GU F, SAHIN H, LUO X, et al. Estimation of resilient modulus of unbound aggregates using performance-related base course properties[J]. Journal of Materials in Civil Engineering, 2015, 27(6): 04014188. doi: 10.1061/(ASCE)MT.1943-5533.0001147

    [16] 张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1–13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm

    ZHANG Jun-hui, PENG Jun-hui, ZHENG Jian-long. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1–13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm

    [17]

    WANG H, LI M Y. Comparative study of asphalt pavement responses under FWD and moving vehicular loading[J]. Journal of Transportation Engineering, 2016, 142(12): 04016069. doi: 10.1061/(ASCE)TE.1943-5436.0000902

    [18]

    LI M Y, WANG H. Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters[J]. International Journal of Pavement Engineering, 2019, 20(4): 490–498. doi: 10.1080/10298436.2017.1309197

    [19]

    ZHANG J H, PENG J H, ZENG L, et al. Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties[J]. International Journal of Pavement Engineering, 2021, 22(6): 732–739. doi: 10.1080/10298436.2019.1643022

    [20]

    ZHANG J H, PENG J H, ZHENG J L, et al. Characterisation of stress and moisture-dependent resilient behaviour for compacted clays in South China[J]. Road Materials and Pavement Design, 2020, 21(1): 262–275.

    [21]

    PENG J H, ZHANG J H, LI J, et al. Modeling humidity and stress-dependent subgrade soils in flexible pavements[J]. Computers and Geotechnics, 2020, 120: 103413. doi: 10.1016/j.compgeo.2019.103413

    [22]

    MUHO E V, BESKOU N D. Dynamic response of an isotropic elastic half-plane with shear modulus varying with depth to a load moving on its surface[J]. Transportation Geotechnics, 2019, 20: 100248.

    [23]

    ZHANG Y Q, GU F, LUO X, et al. Modeling stress-dependent anisotropic elastoplastic unbound granular base in flexible pavements[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(52): 46–56.

    [24]

    BEHNKE R, WOLLNY I, HARTUNG F, et al. Thermo-mechanical finite element prediction of the structural long-term response of asphalt pavements subjected to periodic traffic load: tire-pavement interaction and rutting[J]. Computers & Structures, 2019, 218: 9–31.

    [25]

    LEE H S. Viscowave-a new solution for viscoelastic wave propagation of layered structures subjected to an impact load[J]. International Journal of Pavement Engineering, 2014, 15(6): 542–557.

    [26] 鲁巍巍, 郑健龙. 横观各向同性黏弹性沥青路面的动力响应[J]. 中南大学学报(自然科学版), 2018, 49(4): 964–970. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201804026.htm

    LU Wei-wei, ZHENG Jian-long. Dynamic response of cross-anisotropic viscoelastic asphalt pavement[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 964–970. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201804026.htm

    [27]

    AI Z Y, LI Z X. Time-harmonic response of transversely isotropic multilayered half-space in a cylindrical coordinate system[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 69–77.

    [28] 张军辉, 范海山, 张石平, 等. 考虑层间接触状态的路面动力响应解析解及参数反演[J]. 中国公路学报, 2021, 34(5): 11–23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105002.htm

    ZHANG Jun-hui, FAN Hai-shan, ZHANG Shi-ping, et al. Analytical solution for the dynamic responses and parameter inversion of pavement structures considering the condition of interlayer contact[J]. China Journal of Highway and Transport, 2021, 34(5): 11–23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105002.htm

    [29]

    VRETTOS C. Dynamic response of soil deposits to vertical SH waves for different rigidity depth-gradients[J]. Soil Dynamics and Earthquake Engineering, 2013, 47: 41–50.

    [30]

    VRETTOS C. Rectangular footing on soil with depth-degrading stiffness: vertical and rocking impedances under conditional existence of surface waves[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 294–302.

    [31]

    MATSUI K, MAINA J W, INOUE T. Axisymmetric analysis of elastic multilayer system considering interface slips[C]// International Symposium on Maintenance & Rehabilitation of Pavements & Technological Control Segundo Simposio Sobre Manutencao E Rehabilitacao De Pavimentos E Controle Technologico, 2001, Auburn.

    [32]

    CH V. In-plane vibrations of soil deposits with variable shear modulus: Ⅱ. Line load[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(9): 649–662.

    [33]

    CH V. In-plane vibrations of soil deposits with variable shear modulus: Ⅱ. Line load[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(9): 649–662.

    [34] 任瑞波, 谭忆秋, 张肖宁. FWD动荷载作用下沥青路面层状黏弹体路表弯沉的求解[J]. 中国公路学报, 2001, 14(2): 9–12, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200102002.htm

    REN Rui-bo, TAN Yi-qiu, ZHANG Xiao-ning. Solution for solving asphalt pavement multilayered viscoelastic body surface deflection in the FWD dynamic case[J]. China Journal of Highway and Transport, 2001, 14(2): 9–12, 17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200102002.htm

    [35] 周骜, 谢发祥, 章登精, 等. 基于修正Burgers模型的浇筑式沥青混合料黏弹性参数确定方法[J]. 林业工程学报, 2017, 2(3): 143–149. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201703023.htm

    ZHOU Ao, XIE Fa-xiang, ZHANG Deng-jing, et al. Viscoelastic parameters determination method of pouring type asphalt mixture based on modified Burgers model[J]. Journal of Forestry Engineering, 2017, 2(3): 143–149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201703023.htm

  • 期刊类型引用(3)

    1. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究. 中南大学学报(自然科学版). 2024(03): 1008-1022 . 百度学术
    2. 宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 . 百度学术
    3. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形试验及预估模型. 中国公路学报. 2023(10): 17-29 . 百度学术

    其他类型引用(12)

图(12)  /  表(2)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  37
  • PDF下载量:  275
  • 被引次数: 15
出版历程
  • 收稿日期:  2020-04-05
  • 网络出版日期:  2022-10-07
  • 刊出日期:  2022-05-31

目录

/

返回文章
返回