• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于复频散曲线特征的周期结构高铁路基减振研究

唐豪, 陈晓斌, 唐孟雄, 蔡德钩, 王业顺

唐豪, 陈晓斌, 唐孟雄, 蔡德钩, 王业顺. 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43(12): 2169-2179. DOI: 10.11779/CJGE202112003
引用本文: 唐豪, 陈晓斌, 唐孟雄, 蔡德钩, 王业顺. 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43(12): 2169-2179. DOI: 10.11779/CJGE202112003
TANG Hao, CHEN Xiao-bin, TANG Meng-xiong, CAI De-gou, WANG Ye-shun. Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2169-2179. DOI: 10.11779/CJGE202112003
Citation: TANG Hao, CHEN Xiao-bin, TANG Meng-xiong, CAI De-gou, WANG Ye-shun. Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2169-2179. DOI: 10.11779/CJGE202112003

基于复频散曲线特征的周期结构高铁路基减振研究  English Version

基金项目: 

国家自然科学基金项目 51978674

详细信息
    作者简介:

    唐豪(1996— ),女,硕士研究生,主要从事周期结构减振等方面的研究工作。E-mail:tanghao0908@qq.com

    通讯作者:

    陈晓斌, E-mail:chen_xiaobin@csu.edu.cn

  • 中图分类号: TU473.1

Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves

  • 摘要: 目前对周期排桩衰减域的研究只停留在频散曲线分析阶段,只有少数学者利用二维复频散曲线来研究周期排桩衰减域,而频散曲线只能得到衰减域的范围,复频散曲线能得到振动波在衰减域内的衰减程度。利用COMSOL PDE模块求解三维模型的复频散曲线,通过对排桩排布形式和不同桩身材料的影响进行分析得到:三角形排布的排桩衰减域范围最广且减振效果最好;当桩身材料为混凝土或钢时,能产生高频衰减域,而使用两组元桩时可以产生低频衰减域,但两组元桩和混凝土桩的减振程度比钢桩小。最后,通过建立有限尺度的周期排桩频域响应模型验证了复频散曲线计算的正确性,同时对高铁荷载引起的地基振动特征频率0~50 Hz,提出针对不同频率减振的4种类型桩和1种组合桩,结果说明组合桩能结合4种类型排桩产生衰减域频率分布的特点,且减振效果较好。
    Abstract: At present, the researches on the attenuation zone of periodic row piles only stay in the stage of dispersion curve analysis. Only a few scholars have studied complex dispersion curves of 2D model. The dispersion curve can only obtain the range of the attenuation zone, while the complex dispersion curve can obtain its attenuation degree. In this study, the COMSOL PDE module is used to solve the complex dispersion curve of 3D model. By analyzing the influence of arrangement forms and materials of piles, it is found that the piles in triangular arrangement have the widest attenuation zone and the best vibration reduction effect. When the material of piles is concrete or steel, the attenuation zone in high frequency can be obtained, and the attenuation zone in low frequency can be obtained when two-component piles are used. The vibration reduction degrees of the two-component piles and concrete piles are smaller than those of the steel piles. Finally, a finite-scale frequency domain response model for periodic row piles is established to verify the correctness of the complex dispersion curve. As the characteristic frequency of the foundation vibration caused by the high-speed railway is within 0~50 Hz, four types of piles with different attenuation zones and one kind of composite piles are put forward. The results show that the composite piles can combine the attenuation zones of four types of row piles, and the vibration reduction effect is good.
  • 图  1   周期性排桩的原胞及第一布里渊区

    Figure  1.   Unit cell model and first Brillouin zone of periodic piles

    图  2   十字腔结构计算模型

    Figure  2.   Model for cross cavity structure

    图  3   十字腔周期结构的频散曲线

    Figure  3.   Dispersion curves of cross-like cavity periodic structure

    图  4   十字腔周期结构的复频散曲线

    Figure  4.   Complex dispersion curves of cross cavity periodic structure

    图  5   不同排布排桩的数值计算结果

    Figure  5.   Numerical results of row piles in different arrangement forms

    图  6   不同排布形式排桩的衰减域范围及其衰减大小

    Figure  6.   Attenuation ranges and degrees of row piles in different arrangement forms

    图  7   不同桩身材料排桩的数值计算结果

    Figure  7.   Numerical calculation results of row piles with different materials

    图  8   不同桩身材料排桩的最大衰减域范围及其衰减大小

    Figure  8.   Attenuation ranges and degrees of row piles with different materials

    图  9   有限周期排桩模型示意图

    Figure  9.   Schematic diagram of model for finite period row piles

    图  10   混凝土桩(方案一)的衰减曲线和复频散曲线

    Figure  10.   Attenuation curve and complex dispersion curve of concrete piles (scheme 1)

    图  11   钢桩(方案二)的衰减曲线和复频散曲线

    Figure  11.   Attenuation and complex dispersion curves of steel piles (scheme 2)

    图  12   两组元桩(方案三)的衰减曲线和复频散曲线

    Figure  12.   Attenuation and complex dispersion curves of two-component piles (scheme 3)

    图  13   两组元桩(方案四)的衰减曲线和复频散曲线

    Figure  13.   Attenuation and complex dispersion curves of two-component piles (scheme 4)

    图  14   组合桩示意图

    Figure  14.   Schematic diagram of composite piles

    图  15   组合桩衰减曲线

    Figure  15.   Attenuation curves of composite piles

    表  1   计算方案

    Table  1   Calculation schemes

    因素水平备注示意图
    排布形式4正方形排布(1号)、长方形排布(2号)、三角形排布(3号)、蜂窝形排布(4号)
    桩身材料3混凝土(5号)、钢(6号)、橡胶+钢(7号)
    注:计算方案中一共设置了9种类型的排桩,第1,2,3,4号排桩对比讨论了排桩排布形式对衰减域的影响;第5,6,7号排桩对比讨论了桩身材料对衰减域的影响。
    下载: 导出CSV

    表  2   材料参数

    Table  2   Material properties

    材料弹性模量/MPa泊松比密度/(kg·m-3)
    200.301800
    2070000.307784
    混凝土300000.252500
    橡胶0.120.471300
    完美匹配层200.301800
    下载: 导出CSV

    表  3   计算方案

    Table  3   Calculation schemes

    方案材料半径/m示意图
    混凝土0.8
    0.65
    橡胶+钢R=0.8r=0.75
    橡胶+钢R=0.95r=0.85
    下载: 导出CSV
  • [1] 罗普俊. 正六边形布置的周期性排桩屏障模型试验及其减振影响因素分析[D]. 北京: 北京交通大学, 2018.

    LUO Pu-jun. Model Test and Influence Facors Analysis of Vibration Reduction for Regular-Hexgon Arranged Periodic Pile Barriers[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)

    [2] 姜博龙. 基于带隙理论的轨道交通隔振周期排桩研究[D]. 北京: 北京交通大学, 2019.

    JIANG Bo-long. Study on Periodic Piles for the Isolation of Train-Induced Environmental Vibration Based on Band Gap Theory[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)

    [3] 杨园野. 饱和土体中层状连续屏障隔振研究[D]. 南昌: 华东交通大学, 2017.

    YANG Yuan-ye. Study of Vibration Isolation in Saturated Soil under Traffic Load[D]. Nanchang: East China Jiaotong University, 2017. (in Chinese)

    [4]

    RICHART F E, WOODS R D, HALL J R. Vibrations of Soils and Foundations[M]. Englewood Cliffs: PrenticeHall, 1970: 137.

    [5]

    BOROOMAND B, KAYNIA A M. Vibration isolation by an array of piles[C]//Proceedings of the 5th International Conference on Soil Dynamics and Earthquake Engineering, Karlsruhe, 1991.

    [6]

    LU J F, JENG D S, WAN J W, et al. A new model for the vibration isolation via pile rows consisting of infinite number of piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(15): 2394-2426. doi: 10.1002/nag.2141

    [7]

    YANG X J. Ground vibration isolated by soil and pile barriers[C]//The 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis, 1991: 1557-1562.

    [8] 蔡袁强, 丁光亚, 徐长节. 饱和土中单排弹性桩对平面S波的屏蔽[J]. 岩土工程学报, 2008, 30(7): 964-969. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200807005.htm

    CAI Yuan-qiang, DING Guang-ya, XU Chang-jie. Screening of plane S waves by a row of elastic piles in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 964-969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200807005.htm

    [9] 徐平. 多排弹性空心管桩屏障对平面SV波的隔离[J]. 岩土工程学报, 2011, 33(3): 392-397. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103016.htm

    XU Ping. Rows of elastic hollow pipe piles as isolation barriers for plane SV waves[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 392-397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103016.htm

    [10]

    JIA G F, SHI Z F. A new seismic isolation system and its feasibility study[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(1): 75-82. doi: 10.1007/s11803-010-8159-8

    [11]

    HUANG J K, SHI Z F. Vibration reduction of plane waves using periodic in-filled pile barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 4015018. doi: 10.1061/(ASCE)GT.1943-5606.0001301

    [12]

    SHI Z F, WEN Y G, MENG Q J. Propagation attenuation of plane waves in saturated soil by pile barriers[J]. International Journal of Geomechanics, 2017, 17(9): 4017053. doi: 10.1061/(ASCE)GM.1943-5622.0000963

    [13]

    PU X B, SHI Z F. A novel method for identifying surface waves in periodic structures[J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 67-71. doi: 10.1016/j.soildyn.2017.04.011

    [14] 孟庆娟, 石志飞. 基于周期理论和COMSOL PDE的排桩减振特性研究[J]. 岩土力学, 2018, 39(11): 4251-4260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811042.htm

    MENG Qing-juan, SHI Zhi-fei. Ambient vibration attenuation by periodic pile barriers using periodic theory and COMSOL PDE method[J]. Rock and Soil Mechanics, 2018, 39(11): 4251-4260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811042.htm

    [15]

    LAUDE V, ACHAOUI Y, BENCHABANE S, et al. Evanescent Bloch waves and the complex band structure of phononic crystals[J]. Physical Review B, 2009, 80(9): 92301. doi: 10.1103/PhysRevB.80.092301

    [16]

    YU D L, WEN J H, SHEN H J, et al. Propagation of flexural wave in periodic beam on elastic foundations[J]. Physics Letters A, 2012, 376(4): 626-630. doi: 10.1016/j.physleta.2011.11.056

    [17] 甘莹莹. 考虑复阻尼周期排桩减振性能分析[D]. 北京: 北京交通大学, 2018.

    GAN Ying-ying. Vibration Reduction Analysis of Periodic Piles with Complex Damping[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)

    [18]

    JIANG Y Z, MENG F, CHEN Y F, et al. Vibration attenuation analysis of periodic underground barriers using complex band diagrams[J]. Computers and Geotechnics, 2020, 128: 103821. doi: 10.1016/j.compgeo.2020.103821

    [19]

    BLOCH F. Über Die quantenmechanik der elektronen in kristallgittern[J]. Zeitschrift Für Physik, 1929, 52(7/8): 555-600.

    [20]

    MINIACI M, KRUSHYNSKA A, BOSIA F, et al. Large scale mechanical metamaterials as seismic shields[J]. New Journal of Physics, 2016, 18(8): 83041. doi: 10.1088/1367-2630/18/8/083041

    [21]

    BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200. doi: 10.1006/jcph.1994.1159

    [22] 刘雪珠, 陈国兴, 陈斌. 高速列车运行引起路基-场地体系振动特性研究[J]. 岩土力学, 2007, 28(增刊1): 773-777. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1156.htm

    LIU Xue-zhu, CHEN Guo-xing, CHEN Bin. Analysis of vibration characteristics on subgrade-site under vibrating load induced by high-speed train[J]. Rock and Soil Mechanics, 2007, 28(S1): 773-777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1156.htm

    [23] 刘泳钢, 杨荣山. 板式无砟轨道交通引起的环境振动数值分析[J]. 路基工程, 2012(5): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201205021.htm

    LIU Yong-gang, YANG Rong-shan. Numerical analysis on environmental vibrations caused by slab ballastless track transit[J]. Subgrade Engineering, 2012(5): 75-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201205021.htm

    [24] 彭也也, 贺玉龙, 宋喆, 等. 成渝高速铁路某路堤段地面三向振动测试分析[J]. 中国测试, 2020, 46(2): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202002006.htm

    PENG Ye-ye, HE Yu-long, SONG Zhe, et al. Tri-axial vibration measurements and analysis of the high-speed train induced ground-borne vibration on embankment of Chengdu-Chongqing high-speed railway[J]. China Measurement & Test, 2020, 46(2): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202002006.htm

    [25] 孟祥连, 周福军. 西宝高铁黄土地区路基振动效应空间分析研究[J]. 铁道工程学报, 2017, 34(8): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201708006.htm

    MENG Xiang-lian, ZHOU Fu-jun. Spatial analysis and study of roadbed vibration effect on loess area for Xi'an-Baoji high-speed railway[J]. Journal of Railway Engineering Society, 2017, 34(8): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201708006.htm

    [26] 张光明. 高速铁路路基段地面振动响应研究[D]. 成都: 西南交通大学, 2014.

    ZHANG Guang-ming. Study on the Ground Vibration Induced by Trains Moving on Subgrade of High-Speed Railway[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)

    [27]

    MENG Q J, SHI Z F. Propagation attenuation of plane waves in single-phased soil by periodic pile barriers[J]. International Journal of Geomechanics, 2018, 18(6): 4018035.

    [28]

    HUANG J K, SHI Z F. Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves[J]. Journal of Sound and Vibration, 2013, 332(19): 4423-4439.

图(15)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-11
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回